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BLOW-UP SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC
AND PARABOLIC EQUATIONS*

YIHONG DU AND QINGGUANG HUANG'

Abstract. We study the asymptotic behavior of the solutions to the problem

ut — Ay =au—blx)uP in (0,00) X Q,
auy +PBu =0 on (0,00) x 09,
u(0,.) =wuo in Q,

where p > 1, b(x) > 0 is continuous and vanishes on the closure of a nontrivial subdomain Qg of
Q C RN. This case can be regarded as a mixture of the well-understood logistic (when b(z) > 0
always) and Malthusian (when b(z) = 0) models and has attracted much study in recent years. It
follows from recent studies that the model behaves like the logistic model if the growth rate a of
the species is less than some constant ag > 0 and it behaves differently from the logistic model once
a > ag. In this paper, we show that, when a > ag, the model behaves like the Malthusian model
on part of the domain (i.e., on ¢ where b vanishes) and it behaves like the logistic model on the
remaining part of the domain. Our study shows that the boundary blow-up problem

—Au = au — b(z)uP in Q\ Qo, au, +Bu=0o0ndQ, u= oo ondp

plays a key role in understanding the dynamics of our model and that the whole theory can be
described by a nice bifurcation picture involving a branch of positive solutions at “infinity.”
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1. Introduction. In this paper, we consider the semilinear elliptic equation
(1.1) —Au=au —b(z)uP in Q, Bu =0 on o0

and the corresponding parabolic problem

up—Au  =au—bx)u? in (0,00) x £,
(1.2) Bu =0 on (0,00) x 09,
u(0,.) =wug in Q.

Here a is a real parameter, b > 0 is in C*(Q), and p > 1 is a constant; Q is a C2T#
bounded domain in RN, N > 2, and the boundary condition is given by

Bu = au, + Bu,

where v is the unit outward normal to 9Q and either « = 0,3 = 1 (which gives
the Dirichlet boundary condition) or a = 1,3 > 0 is in C'*#(9Q) (which gives the
Neumann or Robin boundary conditions).

Problems (1.1) and (1.2) are basic population models (see, e.g., [Hs]). Problem
(1.1) is also related to some prescribed curvature problems in Riemannian geometry
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(see, e.g., [Ou] and [KW]). We are interested only in positive solutions of (1.1) and
(1.2) as these are the solutions which are interesting to us.

If b(x) > 0V = € Q, then the equations are known as the logistic equations, and
it is well known that (1.1) has a unique positive solution if and only if a > A\ (),
where A1(Q2) denotes the first eigenvalue of

—Au=Muin Q, Bu=0on 0.

Moreover, u = 0 attracts all the solutions of (1.2) with admissible nonnegative initial
values if a < A1(€Q), while when a > A(Q), the unique positive solution of (1.1)
attracts all the solutions of (1.2) with admissible nontrivial nonnegative initial values.
That is, for any given admissible initial value ug > 0, ug # 0, the unique solution
u(t, z) of (1.2) exists for all time ¢ > 0, and as ¢ — oo it converges to 0 when a < A;(2)
and it converges to the unique positive solution u(z) of (1.1) when a > A;(Q).

If b(x) = 0, then the equations reduce to the linear Malthusian models with
diffusion. It follows from elementary theory of linear parabolic equations (see, e.g.,
[Fr] or [LSU]) that, as t — oo, the solution u(, ) of (1.2) (with nontrivial nonnegative
ug) converges to 0 if a < A1(£2) and it blows up at an exponential rate in ¢ on the
whole Q if a > A\ (2).

We are interested in the degenerate logistic case where b > 0, b # 0, but the zero
set of b is the closure of some suitably regular nonempty subdomain £2¢:

Qo ={z € Q:b(z) =0}.

Hence the model becomes a mixture of the logistic and Malthusian models. The as-
sumption that b vanishes on )y may be interpreted as )y being an ideal environment,
so that the species on )y has almost no limitation for its population growth. We
make this assumption from now on, and let AP () denote the first eigenvalue of the
Dirichlet problem

—Au = Au, ulag, = 0.

Under the above assumptions, the elliptic problem (1.1) was studied in [AT],
[AG], [Da], [dP], [FKLM], and [Ou]; and [FKLM] also considered the correspond-
ing parabolic problem (1.2). Their results can be summarized as follows (see, e.g.,
Theorems 3.5 and 3.7 of [FKLM)]):

e Equation (1.1) has a positive solution if and only if a € (A1(R2), \P(Qp)). In
this case (1.1) has a unique positive solution u,, a — u, is continuous as a
map from (A1 (Q), AP (Qp)) to C*T#(Q), and |[ug|ee — 00 as a — AP () —0.

e For a € (A\1(Q),A\P(Q0)), the unique positive solution u, attracts all the
solutions of (1.2) with admissible nontrivial nonnegative initial values.

e When a < A\;(Q2), then v = 0 attracts all the solutions of (1.2) with admissible
nonnegative initial data.

e In the remaining case a > AP(Qp), any solution of (1.2) with admissible
nontrivial nonnegative initial data blows up in the L®°-norm as t — oo:
limy o0 |Ju(t, .)|loo = o0.

We remark that A;(Q) < AP(Q) always holds as A1 (Q) < AP(Q) < AP(Qy).

Note that the above results imply that (1.2) behaves like the logistic model when
a < AP(Qp) and it behaves differently from the logistic model when a > AP (Qy).
It is natural to ask whether it behaves like the Malthusian model in the latter case.
This question will be completely answered in this paper. It turns out that our model
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behaves like the Malthusian model only on part of the domain Q (in fact, on g where b
vanishes), and on the rest of the domain, it behaves like the logistic model. Moreover,
our results show that the whole theory can be explained by a nice bifurcation picture
involving a branch of solutions at “infinity.”

Let us now explain our main results in the following. Throughout the paper,
we assume that Qy CC Q is nonempty, connected, and with C*** boundary. The
following problem will play an important role:

(1.3) —Au = au — b(x)u? in Q\ Qo, Bu=0ondQ, u= oo on dy.
Here, as usual, u = oo on 9y means that
u(z) — oo as z € Q\ Qg and d(z, Q) — 0.

Now we are ready to state our main results; for simplicity of statement, we have
refrained from giving the most general form here.

THEOREM 1.1. (i) For any a € (—o00,00), problem (1.3) has a minimal positive
solution U, and a mazimal positive solution U,.

(ii) If there exist positive constants a and ¢ such thatlimg, o,y—o b(x)/[d(z,Q0)]* =
¢, then (1.3) has a unique positive solution.

THEOREM 1.2. Let ag = AP (Qq). Then

(i) for any fived x € Qq, ua(x) — o0 as a / ao;

(ii) for any fized x € 0\ Qo, uq(x) — U, (v) asa / ag.

THEOREM 1.3. Let a > ag = AP (). Then for any given admissible nontrivial
nonnegative initial value ug, the unique solution u(t,x) of (1.2) satisfies

(i) for any fived x € Qo, u(t,z) — 00 as t — oo;

(ii) for any fized x € Q\ Qq, limy_ou(t,z) < Ug(x); lim, . u(t,x) > U, (z);

(iii) if (1.3) has a unique positive solution denoted as U,, then for any fized
€ Q\ Qo, limy_ o u(t,z) = Uy(x).

When the solution of (1.3) is unique (as in case (ii), Theorem 1.1), then the above
results give the following nice bifurcation picture for (1.1) and (1.2):

Denote Uy () = Uy(z) when a € Q\ Qg and Uy(z) = 0o when x € Qo; and regard
U, as a solution of (1.1) at “infinity.” Then the unique positive solution branch

Y ={(a,us) : M(Q) <a< /\?(QO)}
bifurcates from the branch of trivial solutions
Yo ={(a,0) : —00 < a < o0}
at a = A\1(Q) and it joins the branch of positive solutions at “infinity,”
Yoo = {(a,T,) : —00 < a < o0},

at a = AP (Qo). Moreover, when a < M\ (Q), the trivial solution on X is globally
attractive for (1.2), when M\ (Q) < a < AP(Q), the positive solution on ¥ is glob-
ally attractive, and when a > AP (Qy), the solution at “infinity” on Yo, is globally
attractive.

Remark 1.4. (i) Our results remain valid if b(x) vanishes on the closure of a finite
number of disjoint subdomains 1, ...,Qy, all with C?T# boundary; the statements
of our results being modified accordingly.
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(if) With a little more effort, our arguments (except the proofs of Theorem 2.8
and Proposition 4.4) can be carried out when A is replaced by a general self-adjoint
second-order strongly elliptic operator and the term uP replaced by a more general
nonlinear function of the similar type.

(iii) Many difficulties in our arguments come from the fact that b(z) vanishes
on p in a continuous fashion. If we allow b(x) to be discontinuous on 9y so that
b(xz) > ¢og > 0 on )\ Qo, then it is much easier to establish similar or better results
(and with less regularity on 0€)p). For example, in this case, (1.3) has a unique
positive solution (by a variant of [MV]). We suspect that the uniqueness result for
(1.3) always holds.

(iv) Our techniques in this paper rely heavily on the assumption that Qy CC Q
and do not work for the case 9y N O #O. This latter case is rather difficult and is
discussed in [DG].

(v) As a by-product of our results, we find that the sufficient condition on the
asymptotic behavior of the first eigenvalues given in [FKLM] is far from necessary.
To be more specific, Theorem 2.4 of [FKLM] shows that

M(=A + g, Q) — A7 ()
if qx is a sequence of increasing nonnegative functions in C*(Q) satisfying
gt =0 on Qp, gr(z) — oo uniformly on any compact set K C Q\ Q.

However, if we take qi(z) = b(z)ub *(z), where a, < ag = A (Q0) and aj, — ao, then
by Theorem 3.6,

ar(z) — b(x)UL () < oo uniformly on any compact set K C 2\ Qq, g5 =0 on Qo,
but we still have, from the equations for u,, , that
)\1(—A + Qk,Q> =ar — ag = )\ID(Q())

Finally, we would like to mention that if b(x) changes sign on €, then it is known
(see, e.g., [AT2] and [BCN]) that there exists a* > A1(2) such that (1.1) has a positive
solution if and only if

(i) a < A1(Q) or

(ii) @ € [A\1(Q),a*] and [, b(z)p(x) < 0, where ¢ > 0 is an eigenfunction corre-

sponding to A1 ().
Some multiplicity results can also be found in [AT2].

The rest of the paper is organized as follows. Section 2 is devoted to the boundary
blow-up problem (1.3), where we use various upper and lower solution arguments to
prove the existence and uniqueness of positive solutions to (1.3). In section 3, we
study the asymptotic behavior of the positive solution wu, of (1.1) as a / ag. A
crucial step here is to show that the solutions blow up on 0. In section 4, we make
use of the results obtained in the previous sections and discuss how the solution of
(1.2) blows up as t — 0.

After this paper was submitted for publication, we learned of the works [GGLS]
and [LS], where some related problems were discussed and interesting numerical sim-
ulations were presented. Our method in this paper can be used to improve some
of the results on the blow-up behavior in [GGLS] and [LS]. More precisely, in [LS,
Theorem 4.3] (see also [GGLS, Corollary 3.3]), through analysis on the first variation
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of the principal eigenvalues, it is proved that the stationary solution blows up on the
boundary T of {b(x) > 0} as a approaches AP ({b(x) = 0}), provided that

b(x) = o(d(z,T)) as d(z,T') — 0.

The method in section 3 of the present paper shows that the above condition is
unnecessary.

2. The boundary blow-up problem (1.3). In this section, we study in detail
problem (1.3). Boundary blow-up problems similar to (1.3) arise naturally from a
number of different areas and have a long history. Considerable amounts of study
have been attracted by such problems. We mention only [BM], [LM], [LN], and
[MV]; many other works can be found from the references of these papers. One main
difference, which posses technical difficulties, of our problem (1.3) from the previous
ones is that our function b(z) vanishes on 9.

We start with an interesting comparison result which will be used frequently later
(actually this result is a little more than enough for our later use).

LEMMA 2.1. If uy,uz € C*(Q\ Qo) are both positive in Q\ Qo and

(2.1) Auy + auy — b(x)uf <0 < Aug + aug — b(z)ub in Q\ Qo,

Buy > Bug on 0;  limg(y p00)—o0(uz — u1) <0,

then uy > uz on 0\ Q.

Proof. We shall use a variant of a method used in the proof of Lemma 1.1 in [MV]
which goes back to [BBL].

We consider only the case that the boundary operator B in our problem is of
Neumann or Robin type, as the Dirichlet case can be proved in exactly the same
manner as in [MV]. Let wy, ws be nonnegative C? functions on 2\ Q vanishing near
0. Using (2.1) and applying integration by parts and subtraction we easily obtain

- /~ [VUQVU)Q — Vu1Vw1] — ﬁ (UQIUQ — ulwl)
(2'2) Q o0

> [b(x)(ugwg —ufwy) + a[ (u1wy — ugws),
) )

where Q = Q\ Q.
Let €1 > €5 > 0 and denote

v, = (u; + Gi)_l[(UQ + €)% — (ug + 61)2]+, i=1,2.

Since v; can be approximated arbitrarily closely in the W12 N L% norm on Q\ Qg by
C? functions vanishing near 92 (this is easily seen to be possible if, say, one extends
v; continuously across 08 first and then uses mollifiers), we see that (2.2) holds when
w; is replaced by v;. Denote

Q+(61762) = {:v S Q : UQ(LL') + e > U1(£L') + 61},

and note that the integrands of [ in (2.2) (with w; = v;) vanish outside this set. The
first integral on the left-hand side of (2.2) equals
2)

2

us + € up +e€

_/ ’Vuz— 9+ 29w, 1+€
Q4 (e1,€2) U+ €

U2 + €9

VUQ

+ ’Vul —
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which is nonpositive. On the other hand, as 0 < €3 < ¢; — 0, the first term on the
right-hand side of (2.2) converges to

/’ b() (™" — w2 — )
Q4.(0,0)

and the other two remaining terms in (2.2) converge to 0. Therefore we would have
a contradiction unless 2, (0,0) has measure 0, i.e., u; > uy on Q. d

Remark 2.2. The conclusion of Lemma 2.1 holds under much weaker conditions;
see, e.g., Lemma 1.1 in [MV], where Qq is empty.

LEMMA 2.3. For any given positive function ¢ € C*T#(9Qq) and a € (—00,00),
the problem

(2.3) —Au = au — b(z)u? in Q\ Qo; ulaq, = ¢, Bulag =0

has a unique positive solution.

Proof. Let a* = max{A1(Q2),a}. Then choose a smooth nonnegative function
b*(z) such that b*(z) < b(z) on Q\ Qo and Qf = {z € Q : b*(z) = 0} has small
volume so that AP () > a*. Then, by Theorem 2 of [Ou] (see also [AT], [dP], or
[FKLM] for the Robin boundary conditions), there is a unique positive solution u*
for the problem

—Au=a*u—b*"(z)uP, Bulgg =0.

Choose a large constant M > 1 such that Mu* > ¢ on €. Then it is easily checked
that Mu* is a supersolution to (2.3). Clearly u = 0 is a subsolution to (2.3). Therefore,
(2.3) has at least one positive solution (see, for example, [St]). By Lemma 2.1, there
is at most one positive solution. Hence (2.3) has a unique positive solution. a

THEOREM 2.4. For any a € (—o00,0), (1.3) has a minimal positive solution U,
and a mazimal positive solution U, in the sense that any positive solution u of (1.3)
satisfies U, (z) < u(z) < Ugy(x).

Proof. Let uc(x) denote the unique positive solution of (2.3) with ¢(x) = ¢ > 0.
We know from Lemma 2.1 that ¢ — u.(x) is increasing. If we can show that wu.(z)
is bounded from above by some function V(z) which is uniformly bounded on all
compact subsets of 0\ Qp, then a simple regularity and compactness argument shows
that ueo(z) = lime,o0 uc(x) is a solution of (1.3). We now set out to find such a
function V.

We can find a nonnegative function b*(x) in C?(Q\ Qo) such that

0 <b*(x) <b(z) Voe\ Q.

Such a function is easy to construct for z bounded away from 9)y. For x satisfying
0 < d(z,Q0) < 6, where § > 0 is small such that x — d(z, Q) is C?, we can define

b (z) = f(d(z,9)), wh b(x)]dsd
()= 10w, where ) = [ [ min_ vlasa
We now fix a ¢y > 0 and define V*(x) such that

(i) V*(2) = ue, () for x € Q) and near 09;

(ii) V*(z) = [b*(2)]?, B =3/(1 — p) for x satisfying 0 < d(z, ) < 6;

(iii) V* is C? and p081t1ve on Q\ Q.
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We show that, for all large constant M > 0, V(x) = MV*(x) meets our require-
ment specified earlier.
Since

BV (z) = BMuc,(x) =0 Vz € 9Q and u 1(111% O[uc(x) —V(z)] = —o0 <0,
x,800)—

by Lemma 2.1, we will have u.(x) < V(z) V z € Q\ Qq if we can show that
(2.4) —AV > aV — b(x)V? Vz € Q\ Q.
For z satisfying 0 < d(z, ) < 8, a direct calculation gives

—AV —aV + b(z)V?
= —BMb* ()7 AV ()= B(B-1) M [b" (2))7 2| Vb" (2)|*—aM [b* (2)) +MPb(x) [b* ()]

> M[b* ()PP H{=Bb* (2) Ab* (z) — B(B — 1)|Vb* (2)[* — a[b*(2)]* + MP~'} > 0
V large M > 0. For z € Q satisfying d(z,Qg) > 6,
—AV —aV 4+ b(x)VP = M[-AV* —aV* + b(x) MP~1V*] > 0

V large M. Hence (2.4) is always satisfied if M is large.

By Lemma 2.1, any solution u of (1.3) satisfies u > u, for every ¢ > 0. Hence
U =lim.—,o e < u and U is a minimal positive solution of (1.3).

To show the existence of a maximal solution for (1.3), we consider the problem

—Au = au — b(z)u” in Q\ Qy,, ulsa, = oo, Bulpg =0,

where Q,, = {z € Q:d(z,Q) < 1/n}.

A similar but simpler (since b(z) > 0 on Q\,,) argument shows that this problem
has a minimal positive solution u,. Using Lemma 2.1, we see that for any positive
solution u of (1.3), u, > upg1 > uwon Q\ Q,. Hence U(z) = limy, o0 uy () > u(x).
But one easily sees that U is a positive solution of (1.3). Hence it is a maximal positive
solution. This finishes the proof of Theorem 2.4. ]

Remark 2.5. To show the convergence of u. as ¢ — oo, we actually need to find
only, for each open set O with O C Q\ Q, a function Vo such that Vo > u. on O
for all ¢. This is much easier to do and requires no regularity on 9€y. In fact, in
a number of places in this paper, our assumption on the regularity of the domain is
more than necessary. Here we have kept the above longer proof because it shows that
if b(z) is C2 near 99y, then U, (x) < M[b(z)]>/ =P for x near 9.

Next we discuss the uniqueness of the positive solutions of (1.3). The following
result will be useful in our proof of the uniqueness result.

LEMMA 2.6. Let b* € C*(Q) be such that b*(z) > 0 Yo € Q\ 0. Then, for any
a € (—00,00), the problem

(25) ~Au = au—b' (@) in Q. ulon = o0

has at least one positive solution.
Proof. Choose subdomains 2; and €25 such that

Qo cCcQy, Q1 CcCQy, QyCcC
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By [MV], the problem
—Au = au —b*(z)uf in Q\ Q, ulaq = 00, ulpa, = 00

has a positive solution uj(z).
Let a* > max{a, A\1(€2)}. Then the problem

—Au =a*u—b*(x)uP in Q, ulog =0

has a positive solution us(x) (see, e.g., [dP]).
Now we define u* € C?(f2) such that
(1) u*(z) = ui(x) for z € Q\ Qo;
(ii) u*(z) = ua(z) for x € Q;
(iil) w*(x) > 0 on Q.
Then it is easily checked that for all large constant M > 0, U = Mu”* satisfies

—AU(x) > aU(z) — b*(x)UP(x) Vz € Q.

A super- and subsolution argument, together with the use of Lemma 2.1, shows that
the problem

—Au=au—b"(z)u? in Q, ulpo =n

has a unique positive solution u, and u, < up+1 < U on Q. Hence u(z) =
lim,, oo un () exists and is a positive solution of (2.5). This finishes the proof of
Lemma 2.6. ]

Remark 2.7. Tt is easy to show that (2.5) has a unique positive solution (see
[MV]). Lemma 2.6 generalizes earlier results of this type (see, e.g., [BM], [MV]),
where b* > 0 on the entire domain is required. One easily sees from the above proof
how this result can be generalized to the case that b* vanishes on the closure of a
subdomain of €.

THEOREM 2.8. Denote d(x) = d(z,Qq). Suppose there exist positive constants o
and ¢ such that

: «
i b(@)/ld(z)]" = c.
Then for any a € (—o00,00), problem (1.3) has a unique positive solution U,. More-
over,

lim [d(:c)]("‘+2)/(p_1)Ua(a?) =

((2 +a)(l+a —&—p))l/(:ﬂ*l)
d(z)—0 '

c(p—1)°

Proof. Given any small € > 0, we fix a 6 > 0 small such that

(i) d(z) is C? V z satisfying 0 < d(x) < 26;

(ii) |%Ad($)s —as?| < eV s €(0,26] and z satisfying 0 < d(z) < 26;
(iil) (¢ — €)d(x)™ < b(z) < (c+ €)d(x)™ ¥V = with 0 < d(z) < 26.

Denote 3 = —fff‘i‘, and let

€= (M)”(H) P (M)l/(pm

c+e ’ c—e
and for o € (0,6), define

v, = [d(z) +0]°¢, Ty = [d(z) - 0]’

(2.6) ;
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Since |Vd(z)| =1 and b(z) > (c—€)[d(x) — o]* when ¢ < d(z) < 26, we easily obtain

— AU, — aUy + b(x) (V)P
= &{ - Bld(x) o] d(a)~ BB Dld(@) o] ~afd(x) o) +b{a) d(x) o] VE "}

> ld(2) - o) — BAd(@) (@) — o] - ald(x) — o)? + ¢}

>0 V zsatisfying o < d(z) < 26.
Similarly, since b(z) < (¢ + €)[d(z) + o]* when d(z) + o < 26,

—Av, —av, + b(z)(v,)"
< &ld(x) + 0] 2{ = BAd(@)[d(x) + 0] - ald(z) + o] — €]

<0 V z satisfying d(z) + o < 26.

Let w be the positive solution of (2.5) with Q replaced by Qs = {z € Q : d(x, Q) <
6} and b* € CH(Qy) satisfying b*(x) = b(z) for z € Qs \ Qo and b*(z) > 0 for z € Q.

Suppose that w is any positive solution of (1.3). Then one easily checks that
v = u + w satisfies

—Av > av —b(x)vP  in Qs \ Q.

Since
v]an, = 00 > v, a0, and v|sn, = 00 > v,laq;,
by Lemma 2.1,
(2.7) u+w>wv, on Qs \ Q.
Similarly,
(2.8) Vo +w>u on s\ Q.

Letting ¢ — 0 in (2.7) and (2.8), we deduce

d(z)P€ + 2w > u+w > d(z)P¢ VYo € Qs \ Q.
Since w is uniformly bounded on 0%y, it follows that
(2.9) € < limy,)od(z) Pu(r) < Timg) _od(z) u(z) < €.

Recalling (2.6) and letting € — 0 in (2.9), we obtain

(2.10) . d(z)Pu(z) = (ﬂ(ﬁc— 1))1/@*1) _ ((2 +?();1_+1)c; +p)>1/(”’1).
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Suppose now u; and wug are two positive solutions of (1.3). By (2.10), for any
e >0,

Jim (@) = (14 9ua@)] = o0, lim fus(x) = (1+ €Ju ()] = —oc.

Let us denote w; = (1 + €)u;, ¢ = 1,2. Clearly,
—Aw; > aw; — b(z)w? in Q\ Qp, Bw; =0 on O,
Hence we can use Lemma 2.1 to conclude that
up(z) < (14 €ua(z), ua(z) < (1+e)ui(z) Vo e Q\ Q.

Letting € — 0, we obtain u; = us. This finishes the proof of Theorem 2.8. ]

Remark 2.9. From the above proof, we easily see that if b(x) > 0 on Q\ Qg and
if the condition of Theorem 2.8 holds with a = 0, then the uniqueness conclusion and
the asymptotic formula near 9Qy (with o = 0) are also valid. In fact, it is easy to
show by a simple variant of the techniques in [MV] that when b(z) > 0 on Q\ Qq,
(1.3) always has a unique positive solution. We suspect that, even in our case where
b(xz) vanishes on 0Qq, the condition limge,)—ob(x)/[d(z)]* = c in Theorem 2.8 is
unnecessary for uniqueness.

By using Lemma 2.1 and a simple compactness argument, we deduce easily the
following result.

COROLLARY 2.10. Suppose that (1.3) has a unique positive solution U,. Then

(i) a — U, is continuous as a map from (—oo,o0) to C*#(K) for any compact
set K C Q\ Qo;

(i) for any fized x € Q\ Qo, a — U,(x) is strictly increasing.

3. Blow-up solutions of problem (1.1). In this section, we study the blow-up
solutions of (1.1) as a — ag. It is well known that a — wu,(z) is strictly increasing
for a € (A1(Q2),ap). Therefore, to study the behavior of lim,_,q, ue(z), it suffices to
study this limit when a — ag is replaced by some sequence a,, — ag. To this end, we
let

Qnp ={z e Q:d(z,Q) <1/n}.

Without loss of generality, we may assume that 2, CC Q for all n > 1. Let a, =
AP(Q,,). Then we have

A1) <an <ag, an — ag asn — oo.
We denote u,, = uq,,, i.e.,
—Auy, = apuy, — b(x)ul in Q, Bu, =0 on 9.

LEMMA 3.1. lim,, e un(x) = 00 uniformly for x in any compact set K CC Q.
Proof. Let ¢o > 0 with ||¢o||cc = 1 be the eigenfunction corresponding to ag =
)\?(90)7

—A¢g = appo, ¢olog, =0,

and let

ao = inf wi(), Bo = mindo(a).
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Clearly,
(3.1) ag >0, Bo >0, up(x)>ui(x)>aeVn>1z € Q.

Given any large number M > 0, we can find a domain K* satisfying K C K* CC Qg
such that

(3.2) d0(z) < agfo/(2M) Va € OK*.

By a standard interior regularity argument (see, e.g., the proof of Theorem 2.1 in
[BNV]), ¢, — ¢o uniformly on K*, where ¢, is given by

—A¢p = ann, d)n‘aﬂn =0, ¢ 20, HQSnHoo =1

Thus, by (3.2) and the definition of Gy, V large n,
(3.3) (M/Bo)pn(x) < ag Yz € OK™; (M/Bo)dn(x) > M/2 Vzx € K.

Recall that b(z) = 0 on K*. Hence w, and (M/By)¢, satisfy the same equation
—Au = apu. It now follows from (3.1) and (3.3) that (M/By)¢, and u, are, respec-
tively, sub- and supersolutions of the problem

—Au =ayuin K*, ulgg = ayp.
As a, < ag < M (K*), it follows from the maximum principle that V large n,
Un(x) > (M/Bo)pn(x) > M/2 VY € K C K*.

Since M > 0 is arbitrary, this shows lim,,_,c un(2) = co uniformly in K. 1]

Remark 3.2. Lemma 3.1 is related to Theorem 3 of [dP].

Since 09 is C?1#, it satisfies a uniform interior ball condition: There exists
R > 0 such that for any = € 9%, there is a ball B, of radius R such that B, C Qg
and B, N0 = {x}.

LeEMMA 3.3. Let x,, € 0Qq be such that

U (zy) = xrenaigo U ().

If {un(zn)} is bounded, then we can find a constant o > 0 and a sequence ¢, — 00
such that

(3.4) Un () > un(xn) + cptp(x)  whenever R/2 < |z —y,| < R,
where Y(x) = e=ole=unl® _ =R g Yn i the center of the ball B, .
Proof. A simple calculation gives

Aty 4 anth = (402 |z — yp|* — 2No + an)e_a‘gc_y”‘2 —ap,e F,
We can choose a large ¢ > 0 such that

—AY(z) < aptp(r) Vo € By, \BR/Q(yn),

where Bp/o(yn) = {z € RN : |z — y,| < R/2}.
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Choose a compact set K CC € such that K D U2, Bg/2(yn). By Lemma 3.1
and the assumption that {u,(z,)} is bounded, we can find a sequence ¢,, — oo such
that

un(x) > Un(xn) + Cn(e_aR2/4 - e_URZ) Vr € BR/Z(yn) C K.

On the other hand, since a,, < ag, by the maximum principle, u,(z) > u,(x,) Vo €
Qo. In particular, u, () > un(z,) on 0By, . Thus we see that u, is a supersolution
to the problem
—Au=ayuin By, \ER/Q(yn)’
(3.5) —oR%/4 _ ,—oR?
ulop,, = un(Tn), UloBg4(y,) = Un(Tn) + cnle —e 7).

But clearly, u,(zn) + ca9(z) is a subsolution to (3.5). Hence, since a, < ag <
\P(B,, \ Br/2(yn)), by the maximum principle,

Un () > up(xy) + cptp(z) whenever R/2 < |z — y,| < R,

as required. | -
LEMMA 3.4. lim, oo un(x) = 0o uniformly on Q.
Proof. By the maximum principle, it suffices to show that

Up(Tp) = xrenaigo up () — 00.

We argue indirectly. Suppose that this is not true. Then by passing to a subsequence,
we may assume that {u,(z,)} is bounded: u,(z,) < C V¥ n.
Clearly, u,, is a supersolution to

(3.6) —Au = apu — b(x)uP in 2\ Qo; ulog, = un(zs), Bulag = 0.

By Lemma 2.3, (3.6) has a unique positive solution, which we denote as v,. By
Lemma 2.1, we deduce u,, > v, on Q\ Q. Replacing u,(x,) in (3.6) by its upper
bound C|, we similarly obtain a unique positive solution V' of (3.6) and by Lemma 2.1,
v <V oon Q\Qo. In particular, ||v,[| L~ \q,) is bounded. Then the LP-estimates and
the Sobolev imbedding theorems (see [GT]) imply that {v,,} is bounded in C*(Q\ ).
In particular, |Vou,(z,)| is bounded. Since

un(z) > vy(z) Yo € Q\ Qo and uy(zy,) = v (),
we have
Ot () /0 < Ovn(xy)/0v, < Cy

for some Cy > 0, where v,, = (Yn, — Zn)/|yn — Tn| and y,, is as in Lemma 3.3.
On the other hand, by Lemma 3.3,

Oun(20) OV > CnOV(20) OV = cn[20Re 7] = o0

as n — 0o. This contradiction finishes the proof. ]
LEMMA 3.5. For any compact set K C Q\Qo, u,, — U,, in C*TH(K) asn — .
Proof. By Lemma 2.1, u,, < U, on Q\Qq. Since uy, () < tny1(2), limy o tn(z) =
Uoo () exists. It follows that us, satisfies (1.3) with @ = ag. Here the fact that
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Uso = 00 on I follows from u, (x) < upt1(z) and uy, () — oo uniformly on 92y by
Lemma 3.4. By Theorem 2.4, we necessarily have u, = U, .

Using Sobolev imbedding theorems and interior estimates, we easily see that
Uy, — U, in C*M(K) as n — oo, for any compact set K C Q\ Q. 0

From Lemmas 3.4 and 3.5, we obtain immediately the following result.

THEOREM 3.6. Let ag = AP (Qq). Then

(i) uq — 0o uniformly on Qo as a /* ao;

(ii) ug — U, in C*(K), as a / ag, for any compact set K C Q\ Qo.

Clearly, Theorem 1.2 is a weaker version of Theorem 3.6.

4. Blow-up solutions of problem (1.2). In this section, we study how the
solutions of (1.2) with admissible nontrivial nonnegative initial values blow up as
t — oo when a > ag = AP (Qp).

Denote X = C(Q) and Xt ={uec X:u>0 VzecQ}.

LEMMA 4.1. Suppose a > ag and ug € X+t \{0}. Then the unique solution u(t,x)
of (1.2) satisfies

lim u(t,z) = oo  uniformly for x € Q.

t—o0

Proof. For € > 0 small, let u.(t, ) be the unique solution to the problem

ur — Au = (ag — €)u — b(z)u?, (t,x) € (0,00) x Q,
(4.1) Bu =0, (t,x) € (0,00) x 09,
(0, z) = uo(x), x €

Since a > ag — ¢, clearly, u(t, ) is a supersolution of (4.1) and hence
u(t, z) > ue(t,x) Y(t,z) € [0,00) x Q.

For any given M > 0, by Lemma 3.4, we can find ¢y > 0 such that the unique positive
solution ugy—c,(x) of

—Au = (ag — €9)u — b(z)u? in Q, Bulspg =0

satisfies uq,—c, () > M V x € Qp. But it is well known that u., (t,7) — tg,—c, () as
t — oo in the L*°(Q2) norm. Hence min g u(t,2) > M V large t. This implies that
u(t,z) — 0o as t — oo uniformly for x € Q. O

LEMMA 4.2. Suppose a > ag and ug € X+t \{0}. Then the unique solution u(t,x)
of (1.2) satisfies

(i) lim, , u(t,z) > U, (x) and lim;_ou(t,z) < Uu(x) Vo € Q\ Qo;

(ii) #f (1.3) has a unique positive solution denoted as U,, then lims—, o u(t, ) = U,
in C*TH(K) for any compact set K C Q\ Q.

Proof. Let us denote the unique positive solution of (2.3) with ¢ = ¢ > 0 by wu..
We first show that for any vy € C(Q2\ o) with vy > 0, v # 0, the unique solution
v(t, z) of

vy — Av = av — b(x)v?, (t,x) € (0,00) x [\ Qo],
4.2) v(t,z) =e, (t,2) € (0,00) x 09,
“ Bu(t,z) =0, (t,z) € (0,00) x 09,
v(0,7) = vo(x), r €N\ N
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satisfies
v(t, ) — uc(z) as t — oo uniformly for x € Q\ Q.

Indeed, for any constant M > 1, Mu, is a supersolution of (2.3). Choose M > 1 large
such that Mu.(x) > v(1,x) on Q\ Qp (note this is possible by the strong maximum
principle), and let v(¢, x) denote the unique solution of (4.2) with v(0,x) = 0, and let
o(t,z) denote the unique solution of (4.2) with v(0,2) = Mu.(z). Then v(t +1,z) <
v(t+ 1,z) < o(t,z). But since u, is the only steady-state solution of (4.2), we have
v(t,z) — uc(x) and ¥(t, ) — u.(x) as t — oo uniformly for z € Q\ Qo (see, e.g., [Ma]
or [Sa]). Hence v(t,2) — u.(z) as t — oo uniformly for x € Q\ Q.

By Lemma 2.1 and the properties of U, for any ¢ > 0, u. < U, and ¢ — u.(z)
is increasing. It then follows easily from the equation of u. that u. — U, as ¢ — o0
in C?T#(K) for any compact set K C Q\ Q.

For any give € > 0, let ¢y > 0 be chosen such that

(4.3) Ueo () > U, (x) —€/2 Va € K.

By Lemma 4.1 we can find T > 0 such that the unique solution of (1.2) with initial
value ug € X\ {0} satisfies u(t,z) > ¢o for t > T and = € 9§y. Therefore,
u(T + t,x) is a supersolution of (4.2) with ¢ = ¢o and vo(x) = w(T,x). Hence,
u(t, ) > ue,(z) —€/2 for all large t and x € Q\ Q. Using (4.3), we see that V large ¢,

(4.4) u(t,z) > Uy(x) —e Vo € K.
This implies that
(4.5) lim, ,  u(t,z) > U,(z) Yz € Q\ Q.

Choose a large constant M > 1 such that MU, (z) > u(1,x) for all x € Q\ Q
(note this is possible in the Dirichlet boundary condition case since U, (z) > uq ()
near 9, where a’ € (A1(2), \P(Qy)) and du,/ /Ov < 0 on IQ). An application of the
parabolic maximum principle shows that

(4.6) u(t,z) < MU, (z) Vt>1,2 € Q\ Q.

Now consider (4.2) with Qg replaced by €, where Q,, = {z € Q : d(x, Q) < 1/n}.
We may assume that Q,, CC Q V n > 1. Then, for any fixed n, as before, every
solution vy, (¢, x) of (4.2) (with Qg replaced by ©,,) converges to the unique steady-
state solution, which we denote as v}, .(z). By the parabolic maximum principle and
(4.6), Vlarge c, u(t, z) < v, o(t, ) for (t,z) € (0,00) x Q\Qy,, provided vo(z) = u(0, z).
Thus

(4.7 limg . sou(t,2) < vk (2) Yo e Q\Q,.

By the proof of Theorem 2.4, as ¢ — o0, v}, .(¥) — v} . (v), which is the minimal
positive solution of (1.3) with Qg replaced by Q,, and as n — oo, v}, (x) = Uq(x),
the maximal solution of (1.3). Therefore, by (4.7),

(4.8) limy—ou(t,z) < Uu(z) Vo e Q\ Qo.

If (1.3) has a unique positive solution U,, then by (4.5) and (4.8), we necessarily
have

lim u(t,z) = Uy(z) V€ Q\ Q.

t—o0
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Moreover, if {t,} is any sequence of positive numbers satisfying ¢,, — 0o as n — oo,
then it follows from (4.6) that {uo(tg,.) : k > 1} is bounded in C(K). By regularity,
it is compact in C?T#(K). Hence we can find a subsequence of {4}, still denoted by
{t1}, and some C? function u, such that

Uoo (Tks ) — Uy 1N 02+“(K).

But we must have uo, = U, by our previous discussions. This implies that lim; . u(t,.) =
U, in the C?*T#(K) norm. The proof of Lemma 4.2 is now complete. O

Thus we have the following result which implies Theorem 1.3.

THEOREM 4.3. Suppose a > ag = AP (Qo) and ug € X+ \ {0}. Then the unique
solution u(t,x) of (1.2) satisfies

(i) limy— oo u(t, ) = 0o uniformly for x € Qq.

(ii) lim, , u(t,r) > U,(z) and lim;_.ou(t,x) < Uy(z) Yz € Q\ Qo;

(iii) 4f (1.3) has a unique positive solution denoted as Uy, then limy_, o, u(t,.) = U,
in C?***(K) for any compact set K C Q\ Q.

As we are able to show that (1.3) has a unique positive solution only if certain
conditions on b(z) are satisfied (see Theorem 2.8), it is of some interest to see whether
conclusion (ii) in Theorem 4.3 can be improved. We suspect that lim; . u(t,x) =
U, (x), but again, can only prove this under some conditions on b(z).

PROPOSITION 4.4. Let us denote d(x) = d(x, Qo). If there exist constants o >
0,¢1 >0, cag >0 and & € (o, + 2) such that

(4.9) crd(z)® < b(x) < cpd(x)* YV & near 9o,

then for a > ap and ug € X+ \ {0}, the unique solution u(t,z) of (1.2) satisfies
lim; 0o u(t,.) = U, in C**(K) for any compact set K C Q\ Q.
Proof. To make the ideas more transparent, we divide the proof into two steps.
Step 1. The conclusion holds under the condition

(4.10) limn i ob() Ly ()] > o/
We first show that there exists some large positive constant C' such that
(4.11) u(t,z) — U, (z) < CV(t,x) € (0,00) x Q\ Q.
If this is not true, then we can find (¢,,z,) satisfying
u(tn, ) — U, (7,) = max{u(t,z) —U,(z) : 0 <t <n,x € Q\Qp} — oo,
as n — oo. By (4.6) and the fact that U, (z) blows up at 9, one easily sees that
(4.12) rn, € 2\ Qo, d(z,) — 0.
We now look at the equation satisfied by u(t,z) — U, (z):

0
(413) o (u—U,) ~ A(w=U,) = {a—pb(@) [0 + 1 = )05 "] f(u— L),
where 0 = 6(t,z) € (0,1). At (t,x) = (tn,zn), because of (4.12), the left side of
(4.13) is nonnegative. However, using (4.10), we see that the right side of (4.13) at
(t,2) = (tn, zn) is negative! This contradiction proves (4.11).
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Given any small € > 0, denote 2. = {z € Q: d(z,Q) < €}. By (4.11), we know
that

(4.14) u(t,z) < (1+6())U, () VYt >0,z € O,

where §(e) > 0 and converges to 0 as € — 0. Let v (¢, z) denote the unique solution of

v — Av=av —b(x)vP, (t,z) € (0,00) x [Q\ Q],
(4.15) v(t,x) = (14 6(e))U,(x), (t,z) € (0,00) x I,
' Bu(t,x) =0, (t,x) € (0,00) x 09,
v(0,2) = MU, (x), r€Q\ Q..

Then using (4.6), (4.14), and the parabolic maximum principle, we obtain
(4.16) u(t+1,2) <wv(t,z) Vt>0,2 € Q\ Q..

By Lemma 2.3, problem (4.15) has a unique steady-state solution which we denote as
uc(z). It follows that v(t,z) — ue(x) as t — oco. Using Lemma 2.1, we easily deduce
ue(x) < (14 6(e))U, (). Therefore, from (4.16), we have

limgsou(t,z) < (14 6(e))U,(x) Vo e Q\ Q..
Letting € — 0, we finally obtain
lim;oou(t,z) <U,(z) Vo e Q\Qo.
This combined with conclusion (ii) of Theorem 4.3 gives

tlim u(t,z) =U,(z) Yz e Q\ Q.
As in the proof of Lemma 4.2, it follows then from the regularity of solutions that
lim; 0o u(t,.) = U, in C**#(K) for any compact set K C Q\ Q.
Step 2. Condition (4.9) implies (4.10).
By (4.9), we can find ¢4 > ¢o and ¢} € (0, ¢1) such that

cid(2)® < b(z) < chd(x)® Vo € Q\ Qo.

Hence, one easily sees that U,(z) is a supersolution to (1.3) with b(x) replaced by
chd(x)®, whose unique positive solution (guaranteed by Theorem 2.8 and Remark 2.9)
we denote as v(z). Considering that v(z) can be obtained as the limit of the solutions
of problem (2.3) with ¢ = n — oo and b(x) = chd(x)®, one sees easily by Lemma 2.1
that U,(x) > v(z). By Theorem 2.8 and Remark 2.9,

lim d(z)* ?v(z)P = ¢ > 0.
d(gi)—»O ()" v(x) o
Hence,
lim o) ob()Wa (@) 2 i chd(@)*0(e)" = +o0 > afp
The proof is complete. ]

Finally we give some estimates on the blow-up rate of the solutions of (1.2).
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THEOREM 4.5. Let a > ag and ug € X\ {0}. Then for any given small ¢ > 0,
there exists a constant M, > 0 such that the unique solution u(t,x) of (1.2) satisfies

u(t, ) < M. el %F9t v e Qy andV large t;
for any x € Qy and any positive constant M, it holds
u(t, ) > Mel*=t ¥ large t.
Proof. For any given € > 0, define
o(t, x) = el Dty (¢ 1),
where u(t, z) is the unique solution of (1.2). A simple calculation shows
vy — Av < (ag — €)v — b(x)vP.

Clearly, Bvlga = 0 and v(0,2) = u(0,z). Hence v is a subsolution of (1.2) with a
replaced by ag — €. It follows from the parabolic maximum principle that

v(t,x) <wu(t,z) Y(t,x) € (0,00) x Q.

Here uc(t, z) denotes the positive solution of (1.2) with a replaced by ag —e. It is well
known that u(t, ) — ug,—c(z) uniformly on 2. Hence if we define M, by

Me = (1 + €) maxug,—(v),
€

then v(t,z) < M, V large t and = € Q. That is,
u(t,z) < M.el= %9t v 2 e Qy and V large t.
Next we let ¢o(z) > 0 with |[[¢o|| (0, = 1 be the eigenfunction for the problem
—A¢ =aod, Ploag, = 0.
Then for any positive constant M, v(t, z) = M'e(¢=) po(x) satisfies
vy — Av = av in Qy, v]sq, = 0.

By Lemma 4.1, there exists T' > 0 such that u(T,z) > M'¢g(x) on Qy. Hence by the
parabolic maximim principle, v(¢,z) < u(T + t,x) for all ¢ > 0 and x € Qy. Now for
any given z € Qg and M > 0, choose M’ such that M’e~(@=20)T ¢q(z) = M; then

u(t, ) > Mel*=*t V large t.

This finishes the proof of Theorem 4.5. ]
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A SOBOLEV SPACE THEORY OF SPDEs WITH CONSTANT
COEFFICIENTS IN A HALF SPACE*

N. V. KRYLOV' AND S. V. LOTOTSKY*

Abstract. Equations of the form du = (a¥ui,; +D;f?) dt + Zk(aikuzi +g*) dwf are consid-
ered for t > 0 and x € Ri. The unique solvability of these equations is proved in weighted Sobolev
spaces with fractional positive or negative derivatives, summable to the power p € [2, c0).

Key words. stochastic partial differential equations, Sobolev spaces with weights
AMS subject classifications. 60H15, 35R60

PII. S0036141098338843

Introduction. The main goal of this article is to extend the results of [6] to
multidimensional cases. We are dealing with the equation

du = (a%ugiy; + fi) dt + (0% ug: + g*) dwk

given for t > 0 and z € RY := {z = (2',2) : 2! > 0,2’ € R}, Here w}
are independent one-dimensional Wiener processes, ¢ and j run from 1 to d, k runs
through {1,2,...} with the summation convention being enforced, and f* and g* are
some given functions of (w,t,x) defined for i = 1,...,d and k¥ > 1. The functions
a” and o' are assumed to depend only on w and t, and in this sense we consider
equations with “constant” coefficients. Without loss of generality we also assume that
a’ =a’".

As in [6], let us mention that such equations with a finite number of the pro-
cesses wl appear, for instance, in nonlinear filtering problems for partially observable
diffusions (see [8]). Considering infinitely many wf turns out to be instrumental in
treating equations for measure valued processes, for instance, driven by space-time
white noise (see [3] or [4]).

Our main goal is to prove the solvability of such equations in spaces similar to
Sobolev spaces, in which derivatives are understood as generalized functions, the num-
ber of derivatives may be fractional or negative, and underlying power of summability
is p € [2,00).

The motivation for this goal is explained in detail in [3] or [4], where an L,-theory
is developed for the equations in the whole space. We mention only that if p = 2, the
theory was developed long ago and an account of it can be found, for instance, in [8].
The case of equations in domains is also treated in [8]. However, the solvability is
proved only in spaces W3 of functions having one generalized derivative in x square
summable in (w, ¢, z). It turns out that going to better smoothness of solutions is not
possible in spaces W3 and one needs to consider Sobolev spaces with weights, allowing
derivatives to blow up near the boundary. The theory of solvability in Hilbert spaces
like W3 with weights is developed in [1] and [7], where n is an integer. Here we show
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what happens if one takes a fractional or negative number of derivatives and replaces
2 with any p > 2. By the way, according to [2], it is not possible to take p < 2 when
a stochastic term is present in the equation.

One of the main difficulties in developing the theory presented below was finding
the right spaces where to look for solutions. In the one-dimensional case R? = R they
have been found in [6]. It turns out that there are many multidimensional counterparts
of spaces from [6]. The one which looks the most natural is to apply weights only
to derivatives with respect to x'. Indeed, why should we allow the derivatives with
respect to tangential variables blow up near ' = 0? The equation is translation
invariant with respect to x’, isn’t it? However, in such spaces it is impossible to solve
equations with variable coefficients in smooth domains unless the coefficients not only
are smooth with respect to & but also behave in a very restrictive way as x approaches
the boundary. And, of course, considering equations with constant coefficients in half
spaces aims at equations with variable coefficients in smooth domains.

This shows that one cannot just imitate the original definition of Sobolev spaces
with weights H ;9 from [6]. However, it turns out that one can very naturally general-
ize to the multidimensional case an equivalent definition, looking much more complex,
which is discovered in [6] and stated there as Theorem 1.11 (see Definition 1.1 below).

This article is organized as follows. In section 1 we present some definitions and
facts from [5] on the basis of which, in section 2, we introduce the stochastic Banach
spaces in which we are going to solve our equations. Our main result is given and
proved in section 3. One auxiliary result used in section 3 is proved in section 4.

We finish the introduction with some notation. Everywhere, apart from section 1,
we assume that p € [2,00). By C§ (D) we denote the set of all n times continuously
differentiable (real-valued) functions with compact support belonging to D. We de-
note

D; =0/0z', Du=u, = (Diu,...,Dgu).
For a multi-index o = (g, ..., aq), where «;’s are nonnegative integers, denote
DO‘:D?I,”D((;d, |a|:a1+...+ad'

By H) = H;(Rd) we denote the space of Bessel potentials (= (1 — A)™?/2L,) with
norm || - ||, (see [9]). For v = 0, we have H) = L, and we denote || - ||, = || - [[o,p-
Any function given on R, := Ri is also considered as a function on le_ indepen-
dent of x/. Define M® as the operator of multiplying by (z!)*, M = M*.
Finally, by D(R1) we denote the space of all distributions on R% that is of
continuous linear functionals on C§°(R%).

1. Sobolev spaces with weights. Here we collect some definitions and facts
from [5].
DEFINITION 1.1. Take and fix a nonnegative function ¢ € C§°(R4.) such that

(1.1) i CP(e®™™)>1 forall z €R.

For~,0 e R, and p € (1,00) let H;,e be the set of all distributions u on RL such that

oo oo

(1.2) lullf o= > ellule)CIE, = Y €l = AP (u(e" Q)| < oo

n=—oo n—=—oo
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Denote Ly g = HS,G'
In the same way, for any separable Banach space X, we introduce the spaces
H) 4(X) of X-valued functions by replacing (1 — A2 (u(e™ )¢) in (1.2) with |(1 —
A)2(ufem)0)x-
LEMMA 1.2. (i) The spaces H)), are Banach spaces and the space Cee(RY) is
dense in HW

(ii) For dzﬁerent ¢ satisfying (1.1), we get the same spaces H79 with equivalent
norms. Furthermore, if n € C§°(R%), then for any u € D(RL) and ~,0,p we have

o0

> e i, < N Z e lfule™ )CIIE

n=—oo n=—oo

where N depends only on ~v,0,p, n, d (and ¢).
(iii) Let « € R. We have u € H’Y if and only if u = M%v with v € H)

p,0+ap-
Hence,

M*H

p,0+ap

H;ﬂ.
In addition,
||UH%P,9 < N||M7QU||%p,9+aP < N”uH%pﬂv

where N are independent of u.

(iv) The space L, g coincides with the space of functions summable to the power
p over RY with respect to the measure (xz)?~¢ dz.

(v) If v is a nonnegative integer, then the space H;,e 18

{u:u, 2 uy, ..., ()M D% € L,y forall a:l|a] <~}

with a natural norm.

The spaces H;,g are introduced and studied in [5] for all # € R. However, below
in this article we always suppose that d — 1 < § < p+ d — 1. For this range of 0, the
following results, again borrowed from [5], are true.

LEMMA 1.3. Letd—1<60<p+d—1.

(i) The following conditions are equivalent:

()uerQ;
(b) w€ H)y" and Mu, € H) ',

()uGH7 and (Mu), € H), '
In addztzon under either of these three conditions for some constants N = N(v,p,0,d)
we have

||u||%p,9 < NHMuvafl,p,@ < NHuH%pﬂv

[[ul Y0 = N||(MU)IHW*1’;D’9 < N”“H%pﬁ'

(ii) We have M~1u € H) , if and only if

€H)Y and M~'ue| JH!
"
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Moreover, there exist constants N = N(d,~, u,0,p) such that, for any p < v and
M~'ue H),, we have

||M_1u‘|%p,9 < Nllug|ly-1,p0 < N||M_1u||%p,9-

(iii) The operator L := M?A+2M D is a bounded operator from H) , onto H;f
and its inverse is also bounded.
(iv) There is a bounded operator

Q:ueH)y— Qu=(Qu,...,Qqu) € (H ;')
such that, for any u € H;,m we have u = MD;Q;u.

2. Stochastic Banach spaces on Ri. Let (2, F, P) be a complete probability
space, (Fi,t > 0) be an increasing filtration of o-fields F; C F containing all P-null
subsets of Q, and P be the predictable o-field generated by (F;,t > 0). Let {wF; k =
1,2,...} be a family of independent one-dimensional F;-adapted Wiener processes
defined on (2, F, P). We are going to use the Banach spaces H)(7), H)(7,[2), and
H () introduced in [3] or [4].

Throughout the remaining part of the paper we assume that

d-—1<0<p+d—-1.

DEFINITION 2.1. Let 7 be a stopping time and f and g*, k= 1,2,..., be D(Ri)—
valued P-measurable functions defined on (0,7]. We write f € H;)Q(T) and g €
H) o(7,12) if and only if f € Ly((0,7]; H) y) and g € L,((0,7]; H, 4(I2)), respectively.
We also denote

HY g =H 4(00), MY o(le) =H ,(00,15), L._....=H’....

In the case f € H) 4(1) and g € H;:gl(T, l2) we write (f,g) € F) 4(1) and define

1l o0 = B | 1FONE ot sl ey = B [ 1laOly

||<f7g)”.7:;,9(7') = HfHH;e(T) + ||9HH;;1(T,12)-

Finally, we introduce spaces of initial data. We write uy € U;a if and only if
M?/P=1y(0,-) € L,(Q, Fo, H;;Q/p) (or by Lemma 1.2, part (iii), if and only if u(0,-) €

Ly(Q, Fo, H) 327 ) and denote

0,1 = B 00, )1y 0

DEFINITION 2.2. For a D(R%)-valued function u defined on € x ([0,7] N [0, 00))
with u(0,-) € Uy, we write w € §) 4(7) if and only if M~ u € H] 4(1) and there
exists (f,g) € .7-";52(7') such that, for any ¢ € C§° (R‘j_), with probability one, we have

QD) (). 0) = @0.).0)+ [ (5,00 ds+ 3 [ (5.0 dut
k=1
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for all t € [0,7] N [0,00). In this situation we also write M~'f = Du, g = Su,
du= M~1fdt + g* dw!

and we define 9 4 (1) = 9, (1) N {u: u(0, ) =0},

@2 Il = el + 1G9 + IO,

As always, we drop T in ) 4(1) and F) 4(1) if T = 00

Remark 2.3. If u € §) 4(7) and ¢(z) = (z') with ¢ € C5°(R), then ¢u lies
in H}(7). By Theorem 2.7 of [4] this implies that if u € £ ,(7) and ||u\|ﬁz’9(7) =0,
then u is indistinguishable from zero.

Of course, we identify elements of 53;’79 (1) which are indistinguishable.

Remark 2.4 (cf. Remark 2.3 in [4]). Given u € ) ,(7), there exists only one

couple of functions f and g in Definition 2.2. Therefore, the notations M “1f = Du,
g = Su, and (2.2) make sense.

It is also worth noting that the last series in (2.1) converges uniformly in ¢ on
each interval [0,7 AT], T € (0,00), in probability.

Remark 2.5. Tt follows from Lemma 1.3 part (ii) that the condition M~tu €
H) () can be replaced with

M~ uGUﬂH (rAT) and umGHZ,El(T)-
pn T>0

Also in (2.2), replacing the norm ||“x”H7;1(T) with \|M—1u||H;9(T) leads to an equiv-
alent norm. "

Remark 2.6. In the same way as in Remark 2.6 of [6] one proves that the spaces
9, 4(7) and 9 , () are Banach spaces.

Remark 2.7. The term M ~'f in (2.1) can be replaced with D, f for f* := Q;f €
Hg;l(ﬂ, i =1,...,d (see Lemma 1.3), and the norm HfHH;;Q(T) (participating in

(2.2)) with >, ||fi||H;;1(T), the latter leading to an equivalent norm.
Remark 2.8. If u € $] (), then MD;u € ,?);7—91(7') fori=1,...d, and
IMDullgy 1) < NG00l o
Indeed, by Lemma 1.3, M~ (M D;u) = D;u € HZ,_gl(T) and by Remark 2.7,
du = D, f7 dt + g* dwf with f7 € H;’;l(T) and g € H;”;l(T, l3), so that
d(MDyu) = M~*M?D;D; fi dt + M D;g"* dw,
where M2D;D; f# = MD;MD,f? — §%MD;, fi. By Lemma 1.3

1M DiD; Iy < N 11 gy < N1l 2y
J
HMDlgHHv 2(7’[2) > NHgH]HI"’ 1(7'l2)’

|| MP/P=E M Diu(0, )|y —1-2/p.p.0
= ||[MD;(M*/P~ (0, ) — 8"(2/p — 1)M*P~ u(0, )|y —1-2/pp.0
< N||M2/p 1“( 7')‘|’y—2/p,p,9'
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THEOREM 2.9. For any nonnegative integer n > vy, the set

(2.3) IR U [ Lu(©.C(0,7 AT),CF(Gr))),

k=1T¢€(0,00)

where Gy = (1/k, k) x {|2'| <k}, is everywhere dense in $) (7).
Proof. Corollary 1.20 of [5] states that there exists a sequence of functions 7y, €
C§°(R4) vanishing near zero and infinity and such that, for any u € H 9> We have

[Inkullypo < Nllullypos  [mw = ullype =0

as k — oo, where N is independent of k£ and u. Obviously, if v € 55;’9(7), then
nku € ) o(7) and by Remark 2.5 and the above result of [5] we get that nyu — u in
9y.0(7)-

To prove the theorem it remains to show only that any u € f)p (1), vanishing
outside some Gy, can be approximated by elements of set (2.3). To do this, notice
that for such u its $) ,(7)-norm is equivalent to Hy(7)-norm. Next, take a function
¢ € C°(R%) with unit integral and for & > 0 define & (z) = e~ % (z/e), ul® (t,2) ==
&(x) xu(t,x). It is easy to check that for ¢ small enough (for instance, such that (%)
vanishes when 2! is close to zero or infinity), we have u(®) € 9y (1) and ul®) € Hy(7)
for all n. In addition, by well-known properties of mollified functions, u(®) converge to
w in H)(7)- and ) 4(7)-norm as | 0. Of course, u(®)(t,x) is infinitely differentiable
with respect to x.

Finally, since u € H}(7), by Theorems 7.1 and 7.2 of [4] we have

(2.4) u € Ly(Q,C([0,7 AT], H)™)).

In addition, by Sobolev’s embedding theorems and by properties of mollifiers, for any
v € H)~! and multi-index a with |a| = n,

| D0 < N[0 ||asn,p < Ne™"|[0]ly-1,p,
where N and « are independent of v (and €). This and (2.4) show that
u'® € L,(Q,C([0,7 AT],CF(RY))).

The theorem is proved.

By repeating the proof of Theorem 2.9 with obvious changes we obtain one more
useful result.

THEOREM 2.10. The statement of Theorem 2.9 remains true if we replace 7 4(7)
and $) o(1) with H o(1) and H) (1), respectively, or with H o(7,1s) and HJ) ,(7,12),
respectively.

As in the one-dimensional case (cf. [6]), the following embedding theorem presents
certain interest.

THEOREM 2.11. Let T € (0,00) be a constant and let 7 < T. Then for any
function w € 9] 4 (1), we have

(2.5) Bsuplfult, 10 < Np.d 00T 2 ully
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To prove this theorem we use the following fact which is similar to Remark 2.2
of [3] or Remark 4.11 of [4]. Its proof can be obtained just by repeating the proof of
Lemma 2.12 of [6] and is omitted.

LEMMA 2.12. Let T € (0,00) be a constant and let T <T. Let u € H) o(7) and

du = fdt+ g* dwF. Then for any constant ¢ > 0,

Ebup\lux( MNE-2, < N(p, )T 2/2(C||ua¢x||Hw 2(r)

-1 P
+c ||f|‘H;_2(T) + ||gw||Hg—2(7712))'

Proof of Theorem 2.11. We proceed as in the proof of Theorem 2.11 of [6]. We
have

oo

(2.6) Eigp\IU(t,-)ll’;_l,p,oé > e”eEingu( "I

n=—oo

Define u, (t, z) := ((z)u(t, e™x) and notice that, since the support of {(z)u(t, e
is not larger than the one of {(x), we have (see, for instance, Remark 1.12 of [5])

nx)

(2.7) llun(t, )ly-1p < Nlluna (t; )lly—2,p-

To estimate the right-hand side of (2.7), assume that du = M~ f dt + g* dwF. Then
duy (t, ) = folt, @) dt + gn(t, ) dwf,

where f,,(t,r) = (M=) (x)e " f(t,e"x), gn(t,x) = ((2)g(t,e"x). By Lemma 2.12

with ¢ = e™ P,

NP (p—2)/2(,— p
EiggHunw(ta )||’y—27p < NT?2)/ (e anunwwHH;ﬂ(T)

np p p
(2.8) +e H‘anHg_Q(T) + ||9"$HH;—2(T,12))'

Furthermore, ||gm||H;72(l2) < HgnHH;—l(ZQ) and

> e llgallly sy =9l s,y < Nl oy
Also,
S L = S IR  MTR

< NI fIl;

_ < Nl|u
H;’92( || ||y3“f (7—

oo oo

n(6—p) p n(6—p) p
Z e HunzzHHZ_fz(T)S Z e HunHH;(T)

n=—oo n—=—oo
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oo

= > UM (e )M oy

n—=—oo

< NIM Ml ) < Nl .

By combining this with (2.8) and (2.6) we get (2.5). The theorem is proved.

As always the main role is played by the spaces .6;79,0(7) of functions with zero as
an initial condition. In connection with this it is worth noting that while constructing
our theory we could replace

(2.9) [1u(0, )15, = E|| M7~ (0, )lle 2/p

with
inf{] v |gr—1 + [[Do]|gr—2 + ||Sv||gr-1 :u—v € 9) 50}
p,0 p,0 p,0 (.

Such an axiomatic approach to defining a norm of u(0,-) yields, of course, the solv-
ability results for the widest possible class of initial data, namely, for those which are
extendible at least in some way for ¢ > 0. However, in applications we often want
to know how to describe “admissible” initial data by knowing only their analytic
properties.

A partial answer to this question is given in the following theorem, which also
shows why we use the norm given by (2.9). For the only case, which we need, v = 2,
the proof of this theorem can be obtained in the same way as Theorem 2.13 of [6]. For
arbitrary « and parabolic operators with coefficients depending only on time instead
of A this theorem is proved in [5].

THEOREM 2.13. IfyeR,d—1<0<p+d—1, and 1 < p < o0, then, for every
ug satisfying ug € U o » in the space 5’379 there exists a unique solution of the heat
equation du = Audt wzth initial data u(O ) = ug. Moreover,

lullo:, < N(d,v,p. ol

3. SPDEs with constant coefficients in R‘i. Take a stopping time 7. On
[(0,7] N (0,00)] x R% we will be dealing with the following equation:

(3.1) du = (6 ugiy; + ML) dt 4 (0™ uy: 4+ gF) dw?

with initial condition u|;—¢ = ug, where ug is a 'D(]R‘_f_)—valued, Fo-measurable random
variable, f and g% are D(R?)-valued P-measurable functions, a’ and o®* are real-
valued P-measurable functions, u is an unknown D(R%)-valued function, and the
equation is understood in the sense of distributions as follows. We say that u is a
solution of (3.1) with initial data ug if for any test function ¢ € C§°(R%) we have

(u(t AT, ')7 ¢) = (an ¢>

d

+/o | D a i (s)(uls, ), buias) + (F(5,7), M~ )] ds

0o EAT d
(3.2) 3 / (=S 0™ (8)(uls, ), dai) + (6" (5, ), )] du
k=1 =1
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for all t > 0 with probability one, where all integrals are assumed to have sense and
the last series is assumed to converge uniformly on each interval of time [0,7] in
probability, where T is any finite constant.

Remark 3.1. If a function u belongs to ) ,(7), then it satisfies (3.1) with

f=M (Du — aijDiDju) s
(3.3) } 4
g* = S*u — o** D,u.

In addition (see Lemma 1.3), we have f € H'Y_Q(T) and g € Hv_l(T l3). Below we
show that under additional assumptions on 0 a, and o the mapping u — (f,g) is
onto.

Assumption 3.2. There exist constants do,61 € (0,1] such that, for every (w,t)
and every ¢ € R?,

Sol€|* < 610" (1)€< aeted < a'(t)€'¢ < 65t€)?,
where

a'l = a"(t) = a'l(t), oY (1) = 30" ()0 M (t).

Here is our main result.
THEOREM 3.3. Letd—1<0 <p+d—1,2<p<oo,y€R, fecH ),

g€ H;,_Hl(ﬂ l2), and up € U;’e. Assume that
. N
p(l—61)+ &1

Then (3.1) or equivalently (3.3) with initial data ug has a unique solution in $) (7).
In addition, for this solution it holds that

p p p
(35) Il sy < NIy + gl

(3.4) d—1+p[l— <f<d—1+p.

+luoll7- ),
p,0

where N = N(~,0,p,d, b0,61).

Remark 3.4. By Remark 2.7, one gets a statement equivalent to Theorem 3.3
if one replaces M~1f in (3.1) with D;f? for certain f* € H;;l(r) and replaces
171 2 i (35 with 1L,

Remark 3.5. If 0 = 0, then one can take 6§ = 1 and (3.4) becomes d —1 < 0 <
d — 1 + p. Furthermore, it is easy to see that, for any o, condition (3.4) is satisfied if
d—2+p<f<d—1+np.

Remark 3.6. It is worth noting that if 6 > p+d —1 or § < d — 1, then the
statement of Theorem 3.3 is false even in the case of the heat equation. This can be
shown by simple examples.

The proof of this theorem is based on two lemmas, the first of which we prove in
section 4.

LEMMA 3.7. Theorem 3.3 holds if v = 2.

LEMMA 3.8. Let the assumptions of Theorem 3.3 be satisfied and let p < . Let
01 € R and let u € 9, , () be a solution of (3.1) with initial condition ug. Assume

that M~ € HY) (7). Thenu € $) ,(1) and

p p p
Hu”f)'Y (7-) (HfHH’Y;?(T) + HgHH;—el(Tyb) + ||u-7" H;’;l(‘r) + HUOHU;‘8)7
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where N = N(d,~, 1,0, p).

One can prove this lemma by repeating almost word for word the proof of Lemma
3.5 of [6]. The only noticeable difference is that the equations in [6] are written in the
form

du = (auge + fo) dt + (akux + gk) dwf,

where we have f, instead of M ~!f. But by Remark 3.4 we also can rewrite (3.1) with
D; f* in place of M~'f.

Proof of Theorem 3.3. As in the proof of Theorem 3.2 of [6] we may assume
that 7 = oo. In the case v > 2 the proof is achieved on the basis of Lemma 3.8 by
repeating the proof of Theorem 3.2 of [6]. In the case v < 2 we need only some minor
adjustments which we present for completeness.

Denote by R the operator which maps (f, g,ug) with f € HZ;{ g € Hg;,l(lg),
and ug € U, into the solution u € ] , of (3.1) with initial data ug. Thus far we

know that R is well defined in spaces H;;)Q X Hg;l(lg) x Uy 5 for v > 2. We want to
show that one can also define R for v < 0.
First, let 2 > v > 1. Observe that by Lemma 1.3, part (iii),

(L7, L7, MY 2P LT M g € HY ) < H G (1) x U S2.
Since v > 0, by what we know in the case v > 2, the function
v=R(LT LT g, M TP LTI M )

is well defined and belongs to Sﬁ;;%
Define

u = L.
By Remark 2.8, we have u € ﬁ; - Furthermore, by definition v satisfies
dv = (aYvgips + MTILTY) dt + (0™ vg: + L7167 dwk.

We apply £ to both parts of this equality, or in other words, we substitute £*¢ in
place of ¢ in (3.2), where £* is the formal adjoint to £. Then we get

dit = (a9 gi g + M7 f + M7U) dt + (0™ tg: + ¢* + °) dw?,

’(NL(O, ) =up + ﬂOu
where

f=MLa" vy — Ma" (Lv)yims + MCM1LTVF — f,

" = Loy — o (L), T = LM2P L= 2/p= 1y — .
Next, we use

LD;¢p = D;Lp— 26" M~ (L — M D)o,
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LM Y¢p=M"1Lp—2D ¢
Then we find that

f=-2a"MD;M (L~ MD;)v—2a" (L~ MDy)Djv —2M D, L~ f,
" = —20"" MY (L — M D),

M*P= g = (2 — 4/p)M Dy L™ M/ P~y + L7 M/P~ 1y,
where c is a constant. As above

(L—MDy)ve®, M'L-MD)eH , DveH

M7~y € Ly(Q, Fo, H 5 727).
It follows that
(3.6) (f,,50) € H) 5" > H o(l2) x U3

Since v > 1, it follows from (3.6) that the function @ := R(f, g, uo) is well defined,
belongs to 56;;1, and the function v = @ — u is of class 5")3,9 and solves (3.1). For
thus constructed u, estimate (3.5) follows from the explicit representation and known
estimates for R, £, M D.

By repeating the above argument, we consider the case 1 > v > 0, this time using
the fact that v 4+ 1 > 1 and relying upon the result for v > 1. One can continue in
the same way and it remains to prove only the uniqueness of solutions in 5’);,9.

It suffices to consider the case f = 0,9 = 0,up = 0 (and 7y < 2). In this case any
solution u € ﬁz,e,o also belongs to .6[2)7970 by Lemma 3.8 and its uniqueness follows
from Lemma 3.7.

The theorem is thus proved.

Remark 3.9. From the above derivation of Theorem 3.3 from Lemma 3.7 it is seen
that for any fixed =, p, 0, a, o satisfying the conditions of Theorem 3.3, if the assertion
of Theorem 3.3 holds for these v, p, 8, a, o, then it holds for any v € R with the same
p,0,a,0.

4. Proof of Lemma 3.7. By Remarks 2.7, we may concentrate on the following
form of (3.1):
du(t,z) = (@ ()uyizs (t,x) + Di f'(t,2))dt
(4.1) + (0™ ()ugi (t, ) + g"(t, z))dw" (t).

Next, notice that by Theorem 2.13 there is a function @ € 5’312,79 such that, @)= =

ug, 0u/Ot = D; f* with f € Hj) 5, and appropriate estimates of ||ﬁ$|\H;:9 and |\f||H1179

through [|ug||y2, hold. This implies that in the equation
du = (aijuxixj + (aijaxj + fi - fz)aﬂ) dt + (Uikuxi + (Uikﬂxi + gk)) dwf

we have i, + fi — fi € H}D’O(T) and 0", +g € Hll)ﬂ(r, l3). Also, obviously if we
can solve the above equation in 512;,9,0(7)7 then by adding to the solution the function
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u we get a solution of (4.1) with initial data ug. Therefore, in the proof of Lemma 3.7
without loss of generality, we may and will confine ourselves only to the case ug = 0.
Finally, obviously we may assume that 7 < T', where the constant T' < oo, and
we start by proving the following a priori estimate.
LEMMA 4.1. Assume that there exists a constant 5 > 0 such that

(4.2) (p—1)(d+p—1—0)a'* —p(d+p—2—0)a't > 6

for allw and t. Then for any u € 5279,0(7),

(43) HM_l’uHILp,H(T) S N(HM(D - a/ijDiDj)uH]prg(‘r) + ||(§ - O-i.Di)uH]Lp,e(T,lz))a
where N depends only on 6g, 02, d, and p.

Proof. For any ~ the operators M D and S are obviously continuous on 55; o(T)

with values in H;;Q(T) and HZ;I(T, l3), respectively. By Remark 2.5 the same is true
for M~": 9] (1) — H) ,(7). By Definition 2.2 and Lemma 1.3 the operators

MD;D,; :5’)379(7) — H;;Q(T), o*D; ,‘7);79(7') — Hg;l(ﬂ l2)

are bounded. By Theorem 2.9, it follows that we need to prove only (4.3) for functions
u belonging to set (2.3) with sufficiently large n.

Take such a function u and define f and g according to (3.3). By Sobolev’s
embedding theorem, if n is large, then f and g are continuous in x, have compact
supports in x, and

E/ sup | f(t, z)|P dt < oo, E/ sup |g(t, )]}, dt < oo.
0o =@ 0 @

It follows easily that u satisfies (3.1) pointwise, that is, for almost any w for all z € R%
and ¢t € [0, 7].

Next we define ¢ = 2 + 6 — d — p, apply It6’s formula to (z1)¢|u(t, z)|?, and find
almost surely for all x € R‘i

.,
(fﬂl)CIU(T’w)Ip:/ lp(l’l)cIUIpzua”umm
0

+p(@h) T ulPPuf + $p(p — 1) (@) ulP2 Y (0 ug + g*)| ds
k

.
(4.4) 4 [ bl Pulo s+ o) dut

0
We take expectations of both parts of this equality, noticing that

. 1/2
/ |u|?P—2 Z loFug: + g*|? ds]
0 k

(4.5) E

, 1/2
< NTEsup |uP " u,| + NEsup |ulP~* [/ |9122] )
<r 0

s<T s<
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Here, for instance, by Holder’s inequality the last expectation is less than

(v-1)/ " v
(Esup [uP) ™" (T(”2)/2E/ 917, ds> < 0.
0

s<T
Therefore, the left-hand side of (4.5) is finite and the stochastic integral will disappear
after taking expectations in (4.4). After this we integrate with respect to z over R%.
By the way, owing to the fact that xz-supports of all functions u, f, and g belong to
some G} and the fact that even the pth power of sup’s over x of these functions are

integrable over (0, 7], we see that all integrals converge absolutely. Hence, by using
Fubini’s theorem and integrating by parts, we get from (4.4) that

0= E/ / [_ p(p - 1)<x1)c|u|p_2&ijuxiuzj
0 ]Ri

—c(@') T e (JulP)yi + p(p — 1) (@) ulP 29 oy

+p(xh) T P f g — 1)) P39l ] dasdt.
Next, we use Young’s inequality to get relations like

@) P S < e(@h)? /et P+ N (@) T 1P,

gkO'ik’Uzgﬂ < N|g‘l2|uz| < 5dijua:iuwj + ‘Nv|g|l227

where € > 0 is arbitrary and N depends only on €, dg, and p. Then we get

0<E / / [(e — plp — 1) (&)l 2a T ugitiys
0 ]Ri

+He+e(e—1))a (@) u/a P+ N@) U7+ N (@) gy, ] dadt.

By Corollary 6.2 of [5] for any ¢

/ (M) |u|P2 e ugiug; > att(1 — c)zpfz/ (M0~ /2t P de.
R4 R4

+ +

Hence,

E/T{@ll[P(P —1) —el(1-¢®’p 2 +a'tfe(l —¢) — MM ullf,  dt
0

< N(Hf”ﬁp’e(ﬂ + ||9||1@17,p,9(7712))~

It remains only to observe that for € small enough from (4.2) we get that

a'llp(p—1) —el(1 = ¢)*p* +a'l[e(1 — c) — €]
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>—(1—cp '6/2+a" (p—1)(1—¢)’p " +a'c(l-c)
=—(1-cp '6/24+ 1 -p p—1)(d+p—1-0)a" —p(d+p—2—6)a']

> (1 —c)pt6y/2.

The lemma is proved.

We divide the remaining part of the proof of Lemma 3.7 into the following sub-
cases:

(1) o =0

(2) general case.

4.1. Case o = 0. Observe that in this case @ = a and (4.2) becomes
a'*(0 —d+1) > 6,

which is satisfied for 8, sufficiently small because we always assume that 6 > d — 1
(and, for that matter, # < p+d — 1). Therefore, estimate (4.3) holds. Of course, this
estimate implies uniqueness.

To prove existence again use (4.3) and proceed as in the proof of Lemma 4.2 of
[6] or Lemma 5.7 of [5]. Since this can be done in quite a straightforward way, we
give only a sketch.

First, bearing in mind the a priori estimate and the method of continuity, we see
that it suffices to consider the case a”/ = §%. Furthermore, owing to Theorem 2.10
and Lemma 4.1 we may and will additionally assume that

f € Lp(Qv C((O’T]v CSL(GIG)))’ g & L;D(Qv C((OvT]v Cg(Gk)))

Continue f and ¢ across ' = 0 so that f becomes an even smooth function and g
an odd smooth function of z!. By Theorem 3.2 of [3] or Theorem 5.1 of [4] there
exists a unique solution u € HJ(7) of (3.1) considered in the whole R? with zero
initial condition. If n is large enough, w is smooth with respect to x and satisfies (3.1)
pointwise. From the uniqueness, it follows that u(t,z) = 0 for ' = 0. Next use the
fact that the functions f and g have compact support and that outside this support
u satisfies the deterministic equation du = Audt. Then as in the proof of Lemma
4.2 of [6] we derive that u € 97 , (7). Using Lemma 3.8 with v = 2 and p = 0 and
Lemma 4.1 we conclude that u belongs to $2 , ,(7), satisfies (3.1), and estimate (3.5)

P
holds for v = 2 and ug = 0. This proves Lemma 3.7 in our first particular case.

4.2. General case. The left inequality in (3.4) means that
oi(p—1)(d+p—-1-0)>p(d+p—-2-10),
which by virtue of Assumption 3.2 implies (4.2) with
b2 ="0o[01(p—1)(d+p—1—-0)—p(d+p—2-10)] >0.

Therefore, a priori estimate (4.3) holds. Using Lemma 3.8 with v = 2 and pu = 0,
we get that estimate (3.5) holds for v = 2 and uy = 0. In particular, we get the
uniqueness.

Furthermore, the same estimate with the same constant N holds if we take Ao**
instead of o** if |\| < 1. Now to get the result in our present case from the case o = 0
it remains only to use the method of continuity (cf., for instance, the end of the proof
of Theorem 5.1 of [4]).
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CONTINUOUS DEPENDENCE IN CONSERVATION LAWS WITH
PHASE TRANSITIONS*

RINALDO M. COLOMBO' AND ANDREA CORLI*
Abstract. This paper is concerned with systems of 2 X 2 conservation laws
(*) Ou+ 9z [f(w)] =0, t>0, z€ R, ucR?

developing phase transitions, as happens in models related to elastodynamics or to van der Waals
fluids, for instance.

In the present paper, a definition of W-admissible solution to (%) is given which comprises the
various definitions in the current literature. Furthermore, the W-admissible Riemann semigroup
(PRS) generated by (*) is introduced and constructed by means of a wave-front tracking algorithm.
Uniqueness and continuous dependence for W-admissible solutions to (%) thus follow.

Key words. conservation laws, phase boundaries
AMS subject classifications. 35L65, 35L67

PII. S0036141097331871

1. Introduction. This paper is concerned with phase transitions in systems of
2 x 2 conservation laws

(L1) Dru+ 0 [f(w)] = 0,

where t > 0, z € R, u € Q, and 2 € R2. The smooth flow function f:{Q) — R? is
strictly hyperbolic. We assume that €2 is the union of two disjoint open sets 2; and {29
which we refer to as phases. The eigenvalues of Df are assumed to be either genuinely
nonlinear or linearly degenerate in each phase. By phase transition we mean a jump
in a solution to (1.1) whose states on the two sides of the discontinuity belong to
different phases.

Phase transitions model abrupt changes in some physical property of the system
under consideration. A well-known example comes from elastodynamics, where u =
(v,w) and f(u) = (—o(w), —v). Here v is the particle speed, w is the strain, and o is
a nonmonotone stress-strain function. In recent years many authors dealt with this
model; we quote for brevity only [11], [1], [14], [13]. Another model developing phase
boundaries is the system of van der Waals fluids, as considered in [18], [19], [8]. We
refer the reader to the survey paper [21] and to [23] for other physical accounts.

The introduction of phase transitions in (1.1) may be necessary in order to solve
the Riemann problem

O+ 0y [f(w)] =0, _ b ifz<o,
S UEI=0 e )= {1 e <O

*Received by the editors December 23, 1997; accepted for publication (in revised form) October
6, 1998; published electronically November 4, 1999. This work was partially supported by TMR
project HCL ERBFMRXCT960033 of the European Union.

http://www.siam.org/journals/sima/31-1/33187.html

T University of Milano, Department of Mathematics, Via Saldini 50, 20133 Milano, Italy (rinaldo@
ing.unibs.it). Current address: Department of Mathematics, University of Brescia, Via Branze 38,
25123 Brescia, Italy.

fUniversity of Ferrara, Department of Mathematics, Via Machiavelli 35, 44100 Ferrara, Italy
(crl@dns.unife.it).

34



CONTINUOUS DEPENDENCE FOR PHASE BOUNDARIES 35

with °,u! in the same phase but not necessarily close. It may well happen that
no physically acceptable solution to (1.2) exists, unless a middle state u? is chosen
in the other phase. From a mathematical point of view, the Lax shock-rarefaction
curves may have no intersection in the phase which contains u” and uf. Nonetheless,
a physically acceptable solution can be defined by introducing two phase boundaries
between v’ and uf.

We shall consider only subsonic phase transitions, which means that the absolute
value of the speed of the discontinuity is lower than the absolute value of the char-
acteristic speeds. An important feature of this case is that the Rankine-Hugoniot
conditions turn out to be insufficient to uniquely determine a solution to (1.2) and a
further admissibility condition, expressed by a function W, is required.

From our point of view, we are not interested in the particular admissibility
condition that is added, provided it satisfies some minimal regularity and stability
assumptions. We consider it to be a physical problem to select the most suitable
admissibility condition for every single specific application of (1.1). We remark, how-
ever, that our procedures apply to both the kinetic approach of elastodynamics [1]
and the visco-capillarity approach [18], [19], [8] of van der Waals’ model.

The main result of this paper is the construction of a W-admissible Riemann
semigroup (PRS) whose orbits are solutions to

Ou + 0y [f(u)] = 0,
13 o) =) - o

where @ is assumed to have suitably small total variation. w is the solution to (1.2)
evaluated at some nonnegative time, with «”, u? in the same or in different phases.
For example, the case u = u, is acceptable.

The main tool is a modification of the wave-front tracking algorithm as developed
in [4], [5] for the construction of a standard Riemann semigroup (SRS). We refer to [3]
for a review of the SRS theory.

The above results depend on a stability and a strong monresonance condition
on the unperturbed problem (1.2). The former was first stated in [6]; the latter
resembles what is done in [5]. A notable difference with respect to [5] is the addition
of a condition to single out the solutions to the Riemann problems, as we mentioned
above; moreover, the generic interaction of a wave against a phase boundary leads to
a configuration entirely different from the case considered therein.

Due to the result in this paper, the whole recent theory of SRSs [3] and wvis-
cosity solutions [2] can be extended to systems of the form (1.1) that develop phase
boundaries. We recall only that by means of the definition of viscosity solutions
the trajectories of the SRS are characterized in terms of integral inequalities relying
solely on (1.1). Furthermore, by introducing a condition analogous to (A3) in [5], it
is possible to uniquely characterize the solution constructed here, thus providing an
existence and uniqueness theorem for viscosity solution to (1.1) satisfying (A3) and
developing admissible phase boundary.

The paper is organized as follows. In section 2 we collect some basic facts, give
precise definitions, and state our main result. The main theorem is applied in section 3
to the problem of elastodynamics and to a model of a van der Waals gas. Section 4
contains the statements of a number of propositions, which are proved in the last
section 5.

2. Notations and main results. Let Q2 be the union of two disjoint open
subsets Q1, Qs of R%; Q; and €, are called phases. Throughout this paper we assume
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that f:Q +— R? is a smooth function and that its Jacobian matrix A(u) = Df(u) is
strictly hyperbolic in all Q; this means that A(u) has two real and distinct eigenvalues
A1(u), A2(u) for every u € Q. By eventually applying a linear change of coordinates,
we assume that

(2.1) =AM < A (u) < =AM <0 < AR < Ao (u) < AP forall w € Q

for two fixed constants A™i", \™aX We denote by 71(u), r2(u) the eigenvectors as-
sociated to the eigenvalues Aj(u), A2(u). Each characteristic family is locally either
linearly degenerate or genuinely nonlinear, i.e., we assume that

either  VA;(u)-ri(u) =0 or Vi(u) r(u) >0 forallueld

and similarly for 4% and U¥. Here U°, U", and U* are subsets of © which are going to
be specified in the following.

The fact that € is the disjoint union of two open sets has important consequences
on the solutions of the Riemann problem (1.2). First, if u” and uf belong to different
phases, no Lax [12] solution can be defined. But even if 4’ and u* both belong to
the same phase €);, then again the Lax solution may not exist. In fact, the shock-
rarefaction curves through v”, u! may have no intersection inside ;. In these cases,
phase boundaries arise.

More precisely, let u:[0,+oo] x R — § be a weak solution to (1.1) such that
u(t,-) € BV for all t. A Lipschitz continuous curve = A(t) is a phase boundary for
u if for almost every t the traces

1 . r .
t)y= 1 t d t)y= 1 t
u(t) %IAI"{;)_U( ;) and  u'(f) u(t, )

are in two different phases. When this happens, the Rankine-Hugoniot condition
(2.2) A- (ul —u") = fluh) = f(u)

must be satisfied for a.e. ¢ in order to have a weak solution. By eliminating A in (2.2),
the Rankine-Hugoniot equations reduce to the scalar condition

(2.3) Prpy(u',u") =0

for a suitable smooth function ®ppy.
In the rest of this paper, we consider only subsonic phase boundaries, i.e., we
assume that

(2.4) ‘A‘ < pmin

The choice (2.4) is motivated by the fact that phase boundaries satisfying ‘A‘ >

A3 can be treated as overcompressive shocks [16], but this situation does not seem
physically relevant; see [11]. In the intermediate supersonic case \;(u') < A < \;(u")
(or Ai(u") < A < Ai(u')), Lax shock inequalities are satisfied and phase boundaries
behave as large shocks and can be treated exactly as in [5]. For sonic phase boundaries,
we refer to [7].

It is possible to define a solution to the Riemann problem (1.2) relying solely
on (2.3). However, in the subsonic case (2.4) the requirement (2.3) alone does not
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single out a unique solution. It is thus necessary to impose a further constraint on
the states on the sides of the discontinuity, say,

(2.5) (u,u™) =0,

where W: (0 X Q2) U (Q2 x Q1) — R is a smooth function. The conditions (2.3)
and (2.5) allow us to single out a unique solution to (1.2). We shall consider only
U-admissible phase boundaries, i.e., those whose side states satisfy (2.3) and (2.5).
We stress that our condition depends on the particular choice of W.

From a physical point of view, the choice of the function W is usually related to
some kind of entropy dissipation, as in the examples developed in section 3. Let us
point out that the case of an admissibility function ¥ depending solely on the speed
of the phase boundary is contained in our framework, since the jump conditions (2.3)
allow us to express A by means of u! and .

Under assumption (2.4) and having imposed condition (2.5), it is natural to give
the following definition.

DEFINITION 2.1. We call W-admissible solution to the Riemann problem (1.2)
under the admissibility condition (2.5)

(i) the usual Laz solution as long as it exists;

(i) the solution consisting of a Lax wave of the first family, a U-admissible phase
boundary, and a Lax wave of the second family, whenever v’ and u* belong to different
phases;

(iii) the solution consisting of a Lax wave of the first family, two V-admissible
phase boundaries, and a Laz wave of the second family, whenever u’ and u® belong to
the same phase but a Lax solution does not exist.

For notational simplicity, we introduce the function ®: (Q; x Q2)U(Q2 x Q1) — R?
by

L,
o) =[5
Denote by D1 ® (resp., Da®) the 2x2 Jacobian of ® with respect to the first (resp., sec-
ond) argument. It is useful to consider the following situations separately:

(1) ®(u’,u?) = 0, so that (1.2) is solved by a subsonic phase boundary and no

other waves;

(2) ®(u’,uf) = 0 and ®(u,u¥) = 0 for some middle state u?, so that (1.2) is

solved by two subsonic phase boundaries and no other waves.
We emphasize that we do not take into account in this paper the phenomenon of
nucleation, i.e., the initiation of two phase boundaries at a certain time from data in
the same phase (see [1], [13]). To prevent nucleation we shall make some assumptions
in order that the solutions to (1.3) have the same number of phase boundaries of (1.2),
which is, according to the previous situations, either one or two.

In case (1), we say that the phase boundary separating u” from uf is stable when

(2.6) det (D1<I>(ub,uu)r1 (ub), ng)(ub,uﬁ)rg(uu)) #0.

This condition ensures the unique solvability in the sense of Definition 2.1, part (ii),
of all Riemann problems with data sufficiently near to u’, u! by the implicit function
theorem. Similarly, in case (2), we assume that

(2.7) det (D@(ub,uh)n(ub), Dg@(ub,ub)rg(uh)> £0,

(2.8) det(chb(uh,uu)rl(uh), ng)(uh,uﬂ)rg(uu)) # 0.



38 RINALDO M. COLOMBO AND ANDREA CORLI

The conditions above imply the solvability of small perturbations of the Riemann
problems with data (u”,u?) and (u?,u*). Due to Definition 2.1, we need a further
global condition ensuring that no small perturbation of the Riemann problem with
data (u’,u*) may be solved without the introduction of two phase boundaries. Let
R’ be the set of points that can be to the right of a wave of the first family exiting
u”. Similarly, let Eg be the set of all those points that can be on the left of a wave of
the second family entering uf. We require that

(2.9) inf  d(u,w)>p>0.
uER?,wEL‘,g

We remark that without (2.9), the L!-continuous dependence on the initial data
may be lost. Indeed, assume for simplicity that there exists a

* b
U ERlﬂﬁg.

Choose now a positive a. Then, problem (1.1) with initial data

W if x < —a,
Uq () = {u” if x € [—a,al,

ut ifx>a
has a unique solution wu, containing two phase boundaries, due to (2.7) and (2.8).
For all a > 0, the qualitative properties of the solution remain unchanged. However,
due to Definition 2.1, at a = 0 the solution corresponding to ug contains no phase
boundaries, but only a Lax wave of the first family joining u* to v* and a Lax wave
of the second family joining u* to u.

In case (2), a damping condition as in [5] is necessary to ensure that small per-
turbations of (1.2) still have a global solution. In order to state this condition, let us
denote by A”, A% the propagation speeds of the phase boundaries, with A”, A* € R.
Consider the case of a small wave ¢ hitting one of the phase boundaries. From the in-
teraction, a reflected wave and a transmitted wave arise. A first-order analysis shows
that these arising waves are bounded by |o| times suitable reflection and transmission
coeflicients, respectively. These coefficients are given by

(2.10) <D1<I>r1(ub), _D2@T2(uh)>_1 (_D2<I>7“1(Ub)a D1<I>r2(uh)) - ( A 5 )’

b
Rh Tbh

-1 #
@11) (Da@ri(u), ~Dobra(uh))  (~Dabri(u), Dydro(uf)) = (15 1)
Ry Ty
where for simplicity we omitted the arguments (u”,u?) in the first line and (u?, uf) in
the second one. Then let us define

Ao(wh) = A da(wf) — A

=227 - A )=
Ab—)\l(w”)’ Aﬁ—)\g(wh).

Due to (2.4), both ©° and ©F are negative numbers and, under condition (2.4), we
have

(2.12) e’'ef > 1.
We say that the strong nonresonance condition holds if

(2.13) ‘Rg@b‘ - ’Rﬁ@ﬁ’ <1
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with RE as in (2.10) and Rg as in (2.11). On one hand, this condition provides the
Lipschitz-continuous dependence in L' from the initial data of the solutions to (1.3);
see [5]. On the other hand, it implies

(2.14) ]Rg\ : ’Rg‘ <1

because of (2.12). Formula (2.14) is the usual nonresonance condition (see [17], [5])
which says, roughly speaking, that the strength of a small wave diminishes after two
reflections against the phase boundaries.

Let us remark that the stability conditions (2.7)—(2.8) together with the assump-
tion

(2.15) R -RE#1

imply the stability of the solution to the Riemann problem (1.2) in case (iii) of Defi-
nition 2.1. In fact, by (2.10) and (2.11),

_ det Ty (u, u?) Rl — det Ty (u?, uf)

R = =
" det S(uP, ut)’ d det S(u, ut)’

where 17, T, and S are the 2 x 2 matrices
Ty, w) = (Dr@(ul,u)rilu), Da@(ul,ul)rs(u)),  i=1,2,
S(ul,u") = (D1<I>(ul7ur)r1(ul), —Dg@(ul,ur)rg(ur)) .

The stability of the solution to (1.2) in case (iii) of Definition 2.1 is equivalent to the
applicability of the implicit function theorem to

{ (g1 (v, 01), uf) =0,
@(uh,(bg(uﬁ,az)) =0

in the unknowns oy, u?, and ¢y. Here, ¢; (resp., qBZ) is the shock-rarefaction curve
from left to right (resp., right to left). The above requires the 4 x 4 matrix

leb(ub,uh)rl (u) Dg@(ub,uh) 0
0 qu)(uh,uﬁ) Dg@(uh,uﬁ)rg(un)

to be nonsingular, which in turn is equivalent to the nonsingularity of

(D1<I>(ub,uh)r1(ub) Do®(u”, uf)ry (uf)  Do®(u’, ul)ro(uf) 0 )
0 D1 ®(uf, uf)r (uf) Dy ®(ub, uf)ro(uf)  Do®(uf, ub)ro(uf) /-

A quick calculation shows that the determinant of the latter matrix is
det Ty (u?, u?) det T (uf, uf) — det S(u”, u?) det S(u?, u?),

which is nonzero iff (2.15) holds. This proves our remark.

The following definition of ¥RS is an adaptation of [2]; similar to [5], we introduce
the set M of smooth increasing diffeomorphisms R +— R. Assume that system (1.2)
admits a solution u, either in case (1) or in case (2).

DEFINITION 2.2. A U-admissible Riemann semigroup (VRS) generated by (1.2)
is a map S:[0,+00[ X D +— D satisfying the following:
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(i) there exists a positive § such that the closed invariant domain D C L}, .(R)
contains the set of functions u: R +— €, such that there exists p € M:

(2.16) lu(-) = (@, p( )l < oo, TVA{u() —u(l, u(-)} <6
(i) Sju=wuand S, oS, (u) = St,+t,/u;
(iil) there exists a positive L such that

(iv) every trajectory t — Syu yields a ¥-admissible weak solution to (1.1) with
initial data u;

(v) ifu € D is piecewise constant, then fort small Syu coincides with the glueing
of the W-admissible solutions of Definition 2.1.

Note that in case (2) the initial data u, at (1.2) belongs to D but it does not
belong to the set defined through (2.16). Moreover, the initial data satisfying (2.16)
are more general than the ones considered at (1.3).

Our main result is the existence of such a WRS, which we accomplish by means
of a constructive procedure.

THEOREM 2.3. Consider system (1.1). Assume that it is strictly hyperbolic with
each characteristic field either linearly degenerate or genuinely nonlinear. Let the
admissibility condition (2.5) be given.

In case (1), fix u” and u? such that the solution to (1.2) contains a subsonic (2.4)
and stable (2.6) phase boundary.

In case (2), firx u’, ub, and u® satisfying (2.9) and such that the solution to (1.2)
contains two subsonic (2.4), stable (2.7)—~(2.8), and strongly nonresonant (2.13) phase
boundaries with middle state u®.

Then, there exists a WRS generated by (1.2).

We remark here that the whole construction is local in the space of conserved
quantities. Thus the above assumption on the linear degeneracy or genuine nonlinear-
ity of the characteristic families is sufficient when satisfied in suitable neighborhoods
of u’, v, and u?.

S, =S| <Ll g+ 11— )

Lt

3. Examples. In this section we give two examples: the first coming from elas-
todynamics and the latter from van der Waals fluids.

In the case of elastodynamics we write u = (v, w), where v is the particle velocity
and w the strain; the flow function is f(v,w) = (—o(w), —v), defined on 2 = R x
(-1, wpr[ U Jwp, +00[), with wps < wyy,. The system (1.1) becomes

{n-yirep=o

The function o is the stress-strain function. We assume that it has a maximum
point wpy; and a minimum point w,,; see Figure 3.1. Moreover, with a little abuse of
notation, we let

Ql :]_17wM[7 QQZ]wm7+OO[
and we assume also that

(3.2) o' >0in O UQ, and 0" <0in Q;, o¢” >0in Qq;
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gy

————

Fic. 3.1. The stress-strain function o.

the behavior of ¢” in the middle zone [wys, wy,] is not relevant. In what follows, we
shall always limit w to the phases ; or (s, where the system is strictly hyperbolic
and genuinely nonlinear. We introduce the sound speed

so that the characteristic speeds of (3.1) are
A(w) = —c(w) and  Ay(w) = c(w).

Let us remark that, from a physical point of view, both evolution from the first (hard)
phase to the second (soft) one and vice versa are possible: an example of the first case
is given by the cold drawing of polyethylene, while an example of the second case is
the hardening of polybutene (see [23]). Moreover, the assumption of concavity of ¢ in
the first phase and convexity in the second one is made only for simplicity; for some
materials, different situations are possible and can be considered within the present
construction.
We consider the Riemann problem for (3.1) with initial data

{ub = (v*,w") ifz <0,

(3.3) Uo(x) =3 4 _ (vf,wt) if 2> 0.

Due to the nonmonotonicity of the stress-strain function o, the Lax shock-rarefaction
curves through (v°,w”) and (v¥, w*) may have no intersection even if both w” and w!
both belong to the same hyperbolic phase. In fact, straightforward computations show
that the Lax solution to (3.1) and (3.3) exists precisely in the following situations:

w M w M

(3.4) vf =0 < / c(w)dw + clwydw if  w’,wt € Q,
wb wt

(3.5) v —vf < / c(w)dw —|—/ clwydw if  w’,w ey .
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Condition (2.9) becomes

w M wnpm
vﬁ—vl’>/ w+/ w)dw+p if w’,wh e O,
wP wh
Ub—Uu>/ c(w dw+/ wydw +p if W wt e Q.
Wim, Wm
If f w)dw < 400, then the above inequalities follow from
(3.6) Huﬁ - ubH >C:p.
On the contrary, if f (w)dw = 400, then no assumption of the type (3.6) im-

plies (2.9).
Consider now a phase boundary with speed A, with right and left states u" =
(v, w"), ut = (v!, w'), respectively. From the Rankine-Hugoniot conditions (2.2), it

follows that

o(w") — o(w')

(3.7 A=c¢- S
where
(38) (=—C Cuw, GC= sign(vr - vl), Cw = Sign(wr — U}l)

(and sign 0 = 0). We consider now admissibility and stability of the phase boundaries.
In the kinetic approach proposed by [1] the choice for the function ¥ is

\I!(ul,ur)

' l b ") — o(w
o) = T )= [ ot au+ oo |~/ TE=T

2 w! w —w

where ¢ is a given constitutive function and (,, ,, are defined in (3.8).

If !, u" are the side states of a nonstationary phase boundary, then the vanishing
of the function ¥ prescribes the amount of physical entropy dissipated by the phase
boundary.

The function ¢ above, as chosen in [1], is singular when A = 0. For this reason the
case of a stationary phase boundary needs to be ruled out. With a different (smooth)
choice of ¢, the construction developed in section 2 can be applied also to the case of
stationary phase boundaries.

In the case (3.9), the stability condition (2.6) reads (see [6])

o(w) —o(w’) N
o(wt) — o(w — + c(w”)e(w?)
& | =, (wh) — o(w’) £ wh — wP

b)2'
wh — wP c(w?) + c(wt)

(w* —w

The above inequality is satisfied whenever ¢ is increasing, which is physically accept-
able.
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Let us consider now the case of two phase boundaries, having speeds A? and Af,
with A”,Af € R and A” < A%, with the same notations of Case 2 of the previous
section; we look for an explicit condition for strong nonresonance. It comes out that

, L clwR)eu?) = ()2 4 B e(w?) — e(u) s SN
(3.10) B = ©° c(wh)e(w”) + (A?)2 4 h? (c(wh) + c(w")) or "= (wh —w?)?’
o1 clwf)e(wh) — (AR 4 b (e(wf) — c(u?)) o V(A
B4 I = 65 cub)olwh) + (AP 1 R (e(w) +e(wh) " ()
where
A = c(wf) AP c(wf)
e’ A+ c(w?)’ o = AF — c(w?)

We already remarked in section 2 that ©” and ©Ff are negative numbers and that
(2.12) holds. Let us point out that, differently from [5], we have ©” < —1 iff A> < 0
and ©f < —1 iff A* > 0; the condition A” < 0 < A¥ is always satisfied in the case
of a trilinear stress-strain function o (see [1, p. 137]). What is more important here
is that from (3.10) and (3.11) we see that the strong nonresonance condition (2.13)
holds if the constitutive function ¢ is increasing.

We briefly note here that the approach developed in section 2 applies also to the
case of those materials for which ¢’ < 0 also in Qs. Indeed, in this case, simply
substitute (3.5) with

o ot <[ (0(wh) — o(wm) (wF — wn) 1/ (0(0?) — 0 (w)) (w0 — wy);

here, w’, w* both belong to Q. Similarly, condition (2.9) becomes

v —of > \/(U(wﬁ) —o(wp)) (W — wy,) + \/(U(w") — o(wp)) (W — wy) + p.

The case ¢” > 0 in 2 can be considered similarly.

With suitable choices of f, €1, and 9, the construction presented in this paper
includes also the trilinear material, as considered in [13]. In this context, Definition 2.1
reduces to the one given therein. Moreover, see [21] for a simple cubic model of o.

Our second example is the one-dimensional isothermal model for a van der Waals
fluid:

.12) {on oy =0

Here v = (v,w), with v being the particle velocity and w the specific volume. The
pressure p is a smooth positive function defined in |0, +00[, with a minimum point w,,
and a maximum point was > Wy, p(wy) < p(war). The liquid phase is Q1 = Jwg, W[
while the vapor phase is 25 = Jwys, +0o[ and we assume

(313) p/ < 0in Q7 UQy, p” > 0in Qq,

as in Figure 3.2.
A key difference between this example and the previous one is the following. As
shown in Figure 3.2, the pressure has an inflection point in s, which makes each of
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wo Wiy, war w

Fic. 3.2. The pression p as a function of the specific volume w.

the characteristic families neither globally linearly degenerate nor globally genuinely
nonlinear. However, thanks to its local nature, the present construction still applies,
provided that none of the points u”, u?, u? coincides with the inflection point. We
point out that in this case the sets R} and Cg in (2.9) are the mized curves introduced
by T.-P. Liu in [15, Section 2]. These curves generalize the usual Lax shock-rarefaction
curves enabling the construction of a solution to Riemann problems with nongenuinely
nonlinear characteristic families.

The formal calculations are omitted, since they are entirely analogous to what has
been shown above. Let us emphasize, however, that the present construction can be
applied also to the admissibility condition obtained in terms of the viscosity-capillarity
criterium (see [18], [19], [8], [9], and [21, formula (5.26)] for the explicit admissibility
condition) as well as to the so-called “normal growth” condition (see [22, formulas
(3.6) and (4.11))).

4. The algorithm. Following [4], all the construction below essentially relies on
a suitable approximation of the solution to Riemann problems with data in Q. As
long as the solution to (1.2) does not develop any phase boundary, the results in [4]
apply.

Consider now Cases 1 and 2. In Case 1, we construct two sets of Riemann
coordinates, defined on neighborhoods U°, U* of u”, uf. In Case 2, we introduce
Riemann coordinates on disjoint neighborhoods U”, U®, and U* of v, u?, and uf,
which is possible due to (2.9). The local Riemann coordinates are denoted by v.
Whenever necessary, the functions defined on U°, (U*, U*) will be bounded uniformly
on U°, (U", UY).

We define now the approximate solutions to the Riemann problems when the
initial data belong to the previous neighborhoods.

In a given set of Riemann coordinates, the i-rarefaction curve (bj and the ¢-shock
curve ¢; through point v can now be parametrized by means of the arc-length o, for
o in a suitable neighborhood of 0, as

{W(”»U) = (v1 + 0, v2), {fbf(vﬂ) = (01 + 0,02 + da(v,0)5),
¢3 (v,0) = (v1,v2 4 0), by (v,0) = (v1 + ¢1(v,0)03,v2 + 0)
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for suitable smooth functions q@l,gﬁg. The juxtaposition of gb;“ and ¢; is the ith
shock-rarefaction curve through v. Choose any C* function ¢: R — R such that

p(s) =1 if s < -2,
¢'(s) € [-2,0] if s €[-2,—1],
w(s) =0 if s > —1,

and, for a fixed € > 0, approximate the i-shock-rarefaction curve as follows:

(4.1) ’(/)Z‘-S(U,U) =9 (0’/\@) '(bl-_(’U,O') + (1 - (U/\/g)) '¢j(1},0'), i =1,2.
[

Let now a left and a right state u', u” are given, with Riemann coordinates v' = (v}, v})
and v" = (v}, v}). There are two different situations.

A first possibility is that u!, u” both belong to the domain of the same chart
(hence also to the same phase) and that the solution to the Riemann problem (1.1)
with data

l .
4.9 oy Ju ifx <O,
(42) (z) { u" ifx>0

attains values in the same phase. An e-approximate solution to (1.1)—(4.2) is con-
structed as follows. First, by the implicit function theorem, we determine unique
values o; and o9 and a middle state v™ such that

o =5 (V" 09), o™ = f (Ul,al).

If o1 > 0, we connect the states v, v™ with a discrete rarefaction wave by the following
procedure. Let the integers h, k be such that

he < vl < (h+ 1), ke <o < (k+1)e

and define the states

; 27+ 1
W{Z(J'&Ué), @{=<]+ E,vé) for j=h,... k.

2

Then the e-approximate solution in the quadrant {¢ > 0, z < 0} is the discrete
rarefaction fan:

ol if e < A ‘
(4.3) v (tr) = Q w] M@ )<z < AN(D]), j=h+1,...k,
o™i A (@F) <2 <0.

If o1 < 0, the states v' and v™ are connected by a single discontinuity:

o @l
. ot ifr <AV (v o)t
(44) vt @) = {vm if \f(v!,01)t <2 <0.

The speed AY of the discontinuity is defined here as
M (0 01) = p(o1/VE) - AL (v, 01) + (1 = (01/VE)) - X (v, 1),

with

k o
meas ([je, (j + 1)e] U [v]", v}
N (! op) = E
1( 1) |O'1‘
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Observe that as soon as 07 < —24/¢ the function v¢ in (4.4) is an exact solution to
the Rankine-Hugoniot equations, a shock wave. For this reason, we shall call briefly
shock waves every funtion v¢ as defined in (4.4).

The construction of the e-approximate solution on the quadrant where x > 0 is
entirely similar, repeating the above construction with waves of the second family.
We refer the reader to [4] for details.

A second eventuality is that u!, u” belong to different phases; in this case the
Riemann problem is solved with the introduction of a small 1-wave, a single exact
phase boundary, and a small 2-wave. This is possible by the implicit funtion theorem
and the stability condition (2.6).

We pass now to a piecewise constant initial condition @ belonging to some suitable
domain. An e-approximate piecewise constant solution to the Cauchy problem with
initial data @ is constructed as follows. At the initial time 79 = 0 we solve the Riemann
problems determined by the jumps in @ applying the algorithm previously described.
This yields a piecewise constant approximate solution u = u®(¢,z) defined up to the
time 71 > 0, where the first set of wave-front interactions takes place. We then solve
these new Riemann problems by again applying the above algorithm. The solution is
prolonged up to the time 5 where the second set of interactions takes place and so
on.

The domain D5 of the approximate semigroup in the two Cases 1 and 2 is defined
as follows. We are concerned only with piecewise constant functions u = u(z) of the
form

n—1

b a, f.
(4.5) U= X oo ) T2 Ny ] F N, oo]

a=1
Whenever u®~1, u® belong to the same chart (and hence to the same phase), a suitable
choice of neighborhoods B(u’,8,) C U°, B(uf,6,) C U*, and B(u*,8,) C U* ensures
that the Riemann problem determined by the jump at x, is uniquely solved by the
above algorithm in terms of waves with sizes 01 o, 02,4. Recalling (4.1), this means

(4.6) v =45 (v, 01a), 02,0)

a—1 [eY
9

where v v® stand for the Riemann coordinates of u®~ !, u®.
Case 1. Assume U° C Q; and U* C Q. For all functions u of the form (4.5)(4.6)
satisfying

(4.7) u17...,u0‘b€B<ub,5o) and uo‘b+1,...7u"€B(uﬁ,6O),

define A" as the set of pairs of waves o; 4, 0 5, that are approaching (see [20]), with
a,3 < o’; the set Af is defined similarly (o, 3 > o” 4+ 1). Then we introduce the
linear functionals and the interaction potentials as

n n

Otb Oéb
V=S loral + K > losal,  VE=EKiY lonal+ > lozal,
a=1 a=1

(4.8) a=ab+1 = a=a’+1
Q" = |0ia0;pl, QF =) 10ia0; gl
Ab At
and finally
(4.9) T =V'+Q, Y=Vi+@h

(4.10) T =17 +7"
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For the sake of simplicity, we omitted the dependence on u. Note the introduction of
the weights K; on the waves eventually impinging the phase boundary. Below it is
proved that the domain

(4.11) Di = {u as in (4.5)—(4.6)—(4.7); YT(u) < 6}

is positively invariant with respect to system (1.1).
Case 2. Similar to above, assume U’ C Qq, U* C Qo, and U* C Q. Moreover, for
all functions of the form (4.5)—(4.6) satisfying

ul,...,u"‘b EB(ub75o)7
(4.12) w w1t e B(uk,6,),
L un € B(u*,6,),

with a® + 1 < of — 1 (so that u attains values in both phases), introduce

2 o 2 af-1 2 n
VI=3"S Klowal, VE=30 Y Kilowals V=YY Kllowal,

(4.13) i=1 a=1 i=1 a=ab+1 i=1 a=at
Q" =) 101,00, Q"= loia0isl; Q' = 0ia04l
A Al At
and then
T =V 4, T = Vi 4 Qf, T = V4 QF,
(4.14) TzT"+T”+Tﬁ+KL3‘v“b+1—U“H.
At last we define
(4.15) Di = {u as in (4.5)—(4.6)—(4.12); T(u) < é}.

The various constants K;, K?, KE, Kf in (4.8), (4.13), and (4.14) will be defined later.
They all depend on f and ®g.

PROPOSITION 4.1. Let the Riemann problem (1.2) satisfy the stability assump-
tion (2.6) in Case 1, the stability assumptions (2.7), (2.8), and the nonresonance
condition (2.14) in Case 2. Then there exists 6 > 0, and suitable constants in the def-
initions (4.8), (4.13), and (4.14), independent of € such that, for any @ € Df, the wave-
front tracking algorithm constructs a unique approzimate solution u: [0, +oo[ X R +—
R? of

Ou+ 0, [f(uw)] =0,
(4.16) {u(O, 7) = a(z)

with the following properties:
(1) us(t,-) € D for allt > 0;
(ii) the function t — Y (u®(t,-)) is nonincreasing;
(iii) any strip [0,T] x R contains finitely many interaction points of u<;
(iv) TV (u®(t,-)) is uniformly bounded,
(v) u® is U-admissible.
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Here D5 is defined by (4.11) in Case 1 and by (4.15) in Case 2.
In both cases, to denote this unique, globally defined, e-approximate solution, we
use the semigroup notation

(4.17) wi(t, ) = SE.

As in [4], the rest of the proof works toward an estimate independent from e of
the Lipschitz constant for S, in the L' norm. The basic technique is to shift the
locations of the jumps of the initial data @ at constant rates and then to estimate the
shift rates of the jumps of the solution u®(t,-), at any fixed ¢ > 0. First we introduce
the shifts and the notion of pseudopolygonal.

DEFINITION 4.2. Let ]a,b[ be an open interval. An elementary path is a map

v:]a,b] — Li, . (R) of the form
(4.18) Z u® o ab [ {Ei =4 +&ab,
with 2% | < 22 for all 0 € |a,b[ and o = 1,..., N; the constants &, are called shift
rates.

DEFINITION 4.3. A continuous map v: [a, b] — L} _(R)is called a pseudopolygonal
if there exist countably many disjoint open intervals Jy C [a,b] such that
(i) the restriction of v to each Jy, is an elementary path;
(ii) the set [a,b] \ U~y Jn is countable.
Exactly as in [4], one can prove the following proposition.
PROPOSITION 4.4. Let v,:[a,b] — D§ be a pseudopolygonal. Then, for all T > 0,
the path

Yr =57 0°%

is also a pseudopolygonal. Indeed, there exist countably many open intervals Jp, such
that [a,b] \ U Jy is countable and the wave-front configuration of the solution u’ =
S 07,(0) on [0,7] x R remains the same as 6 ranges in each Jy,.

Below, we move towards a definition of length of pseudopolygonals by first defining
the length of elementary paths. The latter, in turn, depends on a suitable functional
T¢ which we define below.

Case 1. For all u in D§ defined as in (4.11), let

=3 1060058l (Plalial + Pslssl)

(4.19) et o
Z Z pz a|01 agz 04|7 Qg Z|Uz a0j, [3| (pz a|£l a|+pj g|§] ﬁ|)
=1 a=a’+1

Then we define
(420)  Te=VZ(1+Q)+EK'Q Ti=Vi1+ Q%) + K Qf
with @° and Q* defined as in (4.8) and finally

(4.21) Te = (TZ + T (f)) <1
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Above, é is the shift speed of the phase boundary. The constants p;’-’a, pg,a, K’ K*,

and IC are specified in section 5.
Case 2. For all u in D§ as defined in (4.15), let

2 o
b b b b b
Ve =YY plaloiabial, Q; = 101004l (Pi,a|fi,a| +Pj,g|fj,ﬁ|) :

i=1 a=1 Ab
2 af-1
(422) VE=3" 3 plaliatial QL= liaossl (Phaltial + 25 l¢00)
=1 a=al+1 Al
2 n
V=Y Y aloistial Q=Y lmiaossl (v aleial + 0 sl 00
i=1 a=af+1 At
then
T =V(1+Q") + KQ,
(4.23) Ti=VE(L+QF) + K'Qy,
TE= Vi1 + QY + K*QL,
and, finally,
(4.24) Te = (T‘;+T§+T§+H(’€"‘+’éﬁ‘))e’”;

€ and € are the shift speeds of the phase boundaries. Also in this case the constants
pg’a, pg’a, pg,a, K’ K' K% H, and K are given in section 5.

By means of T¢ we can now define the weighted length of a polygonal and the
weighted distance between two piecewise constant functions. Note that if v is an
elementary path, then the function 8 — Y¢ (v(6)) is constant.

DEFINITION 4.5. For a fived € > 0 the weighted length of the elementary path
in (4.18) is

Il = (6= a) - Te(3).

DEFINITION 4.6. The weighted length of a pseudopolygonal is the sum of the
weighted lengths of its elementary paths. For any two piecewise constant functions
u,w € Dg, their weighted distance is

(4.25) de(u,w) =inf {||v|; 7:[0,1] — D5 is a pseudopolygonal joining u with w} .
Below, we prove that the function
t — d. (Sfu, S;u)

is nonincreasing for all u,w € D5. This, together with the equivalence of d. with the
L! distance, implies that the semigroup S¢ is uniformly Lipschitz continuous with
respect to the L' distance.

PROPOSITION 4.7. Let the Riemann problem (1.2) satisfy the assumptions of
Theorem 2.3. In both Cases 1 and 2, there exist 6 > 0 and positive constants in
the above definitions of Y¢, independent of €, such that if v, is a pseudopolygonal,
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then the weighted length ||v-|| of the pseudopolygonal v, = SE o7y, is a nonincreasing
function of time.

PROPOSITION 4.8. For any 6 > 0, there exists some &' € ]0, 6] such that any two
functions u, v’ in D5, can be joined by a pseudopolygonal entirely contained in Df.
Moreover, the weighted length of this pseudopolygonal is uniformly equivalent with
respect to € to the usual distance ||u — u’HLl.

PROPOSITION 4.9. Let the Riemann problem (1.2) satisfy the assumptions of
Theorem 2.3. Then there exists a positive 8, independent of e, such that the semigroup

5:[0, 4-00[ x D§ — Dj

defined by (4.17) is uniformly Lipschitz continuous with respect to the L' distance,
with a Lipschitz constant independent of €.

As in [4], to complete the proof of Theorem 2.3, we now consider a sequence
of semigroups S¢» with lim,_, . €, = 0 and construct the limit semigroup. More
precisely, we fix 6 > 0 according to Proposition 4.9 and define the closed domain

(4.26) D ={u:3u, —u, u, < Di foraln}.
For @ € D and t > 0, we then define

(4.27) Siu = lim Sy,
n—-+oo

where 4, € D§" is any sequence approaching @ in L!'. We conclude by proving the
following proposition.

PROPOSITION 4.10. The closed domain D in (4.26) and the semigroup S in (4.27)
are well defined and satisfy (1)—(v) of Definition 2.2 for suitable constants L,6 > 0.

Let us point out that an important point in the previous proposition consists in
proving that the W-admissibility is conserved in the limit.

5. Technical proofs. In this section we collect those technical parts that differ
significantly from [4]. Indeed, the present construction of the semigroup differs from
the one therein in the proofs that the amounts T and T, are nonincreasing when
an interaction involving a phase boundary takes place (Propositions 4.1, part (ii),
and 4.7). Once this is known, the same inductive (resp., perturbation) technique
used in [4] to prove that T (resp., T¢) is nonincreasing still applies. Then we give a
proof of Proposition 4.8 on the basis of an analogous result in [5]. For what concerns
Proposition 4.10, we prove the W-admissibility of the orbits of the semigroup and refer
the reader to [4] for the missing parts.

Propositions 4.4 and 4.9 are proved as in [4].

Aiming at the proof of Proposition 4.1 we recall the basic interaction estimates.

First, we give the basic estimates for two small interacting waves, the case of
many interacting waves is covered as in [4, Lemma 5]. Here and in all that follows,
o} denotes the total size of outgoing i-waves; see (4.3).

With reference to the notation in Figure 5.1(i), if two waves o7 , o5 of different
families interact, then

(5.1) lof —or |+ |05 —oy | <C-loroy | (Jor|+]os])-

In this section, by C' we denote a suitably large positive constant. In the case of two
waves o', o’ both belonging to the first family (see Figure 5.1(ii)), we have

(52) jof = (0" +0")| + [oF]| < C- 100" (10" + 10"
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+ oF + o)
o] 2 o]
91
[ - o5
2 o1 i 2

() (i) (i)

Fic. 5.1. Interaction of small waves of different families (i), of the same family (ii), and of
small waves with the phase boundary (iii).

The case of waves both belonging to the second family is entirely similar.

Moreover, we shall consider in detail interactions involving a phase boundary
having, say, a left state in )y and a right state in {2, with the notation as in Fig-
ure 5.1(iii).

In Case 1, using the notation in Figure 5.1(iii), the basic estimates related to
interactions involving the phase boundary are

5:3) ot <Clor|+losl). o] <0 (or | +]oz])
In Case 2, slightly more precise estimates are necessary:
(5.4) ot <C(lor|+lozl),  loF] < 1+ CO)|RY|lor| + Cloz .

An entirely similar convention is followed in case (2.11).
Let 7 be a time at which an interaction occurs. We use the notation

FT =F(r+), F~=F(r—), and AF=F"-F",

where F'canbe V, Q, T, Vg, Q¢, or T¢. In general, the signs + (resp., —) are attached
to quantities related to waves exiting (resp., entering) an interaction.

Proof of Proposition 4.1. Below, we prove that Y decreases strictly whenever a
simple interaction takes place, in both Cases 1 and 2.

Case 1.  We choose first

Ki=Ky=1+4+2C

and a sufficiently small ¢ so that (5.5) and (5.6) hold.
(1) Two small waves of different families interact in the left phase.
We denote the waves as in Figure 5.1(i); by (5.1) we have

AY = AY? < |Jf| +K2‘O’§r| - |Uf| —K2|05| - yafoﬂ
+(|Uf—af|+|0;—ag|)Vb
(5.5) <[CO+Ka+6) (o] +oz]) —1] - |or o5
<0

provided 6 is sufficiently small.
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(2) Two small waves of a same family interact in the left phase.

As in Figure 5.1(ii), o/ and ¢” belong to the first family (the other case is analo-
gous). Then, by (5.2)

AT =AY’ < |Ui"| +K2|U;'| —|o'| = |o"] = o' | + ({af' — (o’ +cr")| + |cr;'|) 1%
(5.6) <[CA+ Ky +6) (o’ +]0"]) = 1] - [o'a”|
<0
provided ¢ is sufficiently small. The interaction of small waves in the right phase is
completely analogous; hence it is omitted.

(3) Two small waves interact with the phase boundary.

The following estimates rely on a first-order argument. Thus we can consider
interactions of, possibly, several waves hitting the phase boundary on both sides. Call
o, the total size of the waves of the ith family impinging the phase boundary; then

AY < o |+ [of |+ [of [V* + o [V = Kooy | = Kafoy |
<[C(1+46) = Ki]|oy | + [C(1 4 6) — Ks] |05 |
(5.7) < (o7 |+ o5))
due to the choice of K;. The proof of Proposition 4.1 in Case 1 is concluded.
Case 2. We choose the weights in (4.13) in the following way. First

K;=1 and K!=1.
Because of (2.14) we can choose K7 and K% such that
Kf—(1 +C§)‘RE‘K§ > 20+ (1 +05)‘Rg‘ +2,

(5.8) u
Ki-(1 +C(5)’R§‘Kf > 20+ (1+ Cé)]Rg‘] +2.

Next select K. 5, K f sufficiently large so that estimates analogous to the ones in Case 1,
subcase 3, still hold and moreover

(5.9) Ky>C(Ki+3)+2 and K'>C(K'+3)+2.

Let small waves of strengths o; and o, impinge on the leftmost phase boundary;
see Figure 5.1(iii). Let v, vl be the states in U% just on the right of the phase

T
boundary, respectively, before and after the interaction. A simple first-order argument

shows that there exists a constant C such that
(5.10) o —vr [l <C (Joy |+ loz]);

let K3 in (4.14) be such that K3 > C.

We consider in detail only the case of Figure 5.1(iii), since the interactions against
the other phase boundary are treated entirely similarly, while those interactions far
from the phase boundaries can be tackled as in Case 1. From (5.4) we have

AY < Ko | - KS|og | + |of [V~
< (C(K{ +6) — Kg) o | + C(K7 + 6)|o7 |,
AY? < Ki|of | = Kiloy | +[oF [VF
< ((1+C&)‘RE‘(K§ +6) = K}) o7 | + C(KS + 6)| o5 |.
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0y 0,

G (i)

F1G. 5.2. Interactions of waves (thin lines) with the phase boundary (thick line).

Then by (5.8), (5.9), and (5.10) we deduce
AT < ((1+ C&)]RE](KE +6) + C(K +8) — K7 ) |o7 |
+ (C(K? +6)+ C(K3+6) — Kg) o5 |

+(lov |+ oz )
(5.11) < = (lor [ +1oz )

due to (5.9) and to the choice of K3. This accounts for Case 2; the proof of Proposi-
tion 4.1 is therefore complete. a

We note that applying the usual compactness argument based on Helly’s theorem
to the result of the above Proposition 4.1 we have the usual Glimm’s theorem on the
global existence of weak solutions to (1.1).

Preliminarily to the proof Proposition 4.7, we collect below the basic interaction
estimates for shifting waves; see [4]. It goes without saying that & (resp., &, &,
etc.) are the shift speeds of o (resp., o, , o/, etc.); see Figures 5.1(i) and 5.1(ii).

Dolotaslal = lorér [+ lod &l — oz & |
«

(5.12) <C-lovoy |- (J& |+
(5.13) oy & = (|o'ad |+ |o"i") + > 05 0éd ] < C 10’ - (1€ +1€"]) -

We refer to [4, Lemmas 21, 22] for a proof.

In Case 1, refer to Figures 5.2(i) and 5.2(ii) and denote by £, £F the shift speeds
of the phase boundaries before and after the interaction.

A first-order analysis similar to the one in [5] yields

(5.14) ¢ =& | <o lor| (& +]67]).
(5.15) S lotattal < C-lor | (le ]+ [€).
(5.16) S lodatdal <C-lor | (671 + ‘57’)

fori=1,2.
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In Case 2, we make use of the same estimates, but we denote the shift speeds of
the two phase boundaries by £” and ¢%. Moreover, (see (5.20) in [5])

(5.17) S lotatal < 1+ C8)|BEO|lov & | +C [or |6

[e%

(5.18) S lotabial < (14 CO)| RO oz 5 |+ C - |og ||,

)

Proof of Proposition 4.7. We denote the quantities related to interacting waves
as above; see Figures 5.1(i), 5.1(ii), 5.1(iii), 5.2(i), and 5.2(ii). Noninteracting waves
are labeled o; 3. We denote, moreover, by A; , the set of waves approaching ; q.

Case 1. First, the choice of the weights; referring to formula (4.19) we take

pg-’a =1+ €o Signal:a7 pg,a = K(l + €0 Signo’la)y
pg,a = K(l +&o Signgl,a)7 pg@ =1+ ¢,signog q.

Choose the various constants in the definition (4.19), (4.20), and (4.21) of T in the
following order: K, K”, K* and K sufficiently large; e, and 6 sufficiently small. A
possible choice is

1
K=1+24C, K’=K"'=1+8CK, K=1+20(1+K +KK"), f0< 3

with § < (epays-
(1) Interaction between small waves of different families.
Assume that the interaction takes place in the leftmost phase. Compute first

AVE =Y "pit ot =Y p e g |
< CK(1+4e0)|oy oy | (|&7]+167])

since pi‘; = pi’»_ for every « and ¢. Moreover,

A=Y 3 lotaossl (Phaleial +pislésl)

ha (j,8)€A,

= X lovossl (B ler |+ #slesl) — lovor | 2opi e |

i(j,B)EAL

<D op Dot o e
i @
25 D lodal = o7 |
i o

< CK(1+eo)|oror | (|6 +€7]) 6

Vel

2
Ve —sloror | (e + e )

_ _ _ 2, _ _ _ _
+Cloy oy | (|or |+ o |)V5b - §|‘71 oy | (J& |+ & ])

_ _ _ N _ _
< CKloy oy | (|or |+ o3 |)V5b *§|01‘72|(|51|+’52 )
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At last
AQ" < 71|O'_0'_|
— 2 1 2 °
The above estimates are valid under the choices above of the weights and for § suffi-
ciently small. From the previous estimates, it follows that
(5.19) AT, = AVZ + K'AQL + QTAV? + VI AQ
1, _ _ _
< OK(1+50)(1+6)*§K {Jl o |(’§1 }+|§2 |)
b [
+(CK K6 =5 ) |or oy V¢
<0.
By Proposition 4.1 we obtain
AT < ATRT <o,

Analogous estimates hold for interactions of waves of different families in the rightmost
phase.

(2) Interaction between two shocks of the same family.

Again, assume that the interaction takes place on the leftmost phase. Similar to
the previous case we find

AV? < CK(1+&o)|o’a”| (1€ +1€"]),
while

A = Y lotousl (iFler |+ slesl)

(.B)eAT

DD "72+,an,5|(p?alﬁialﬂzﬁlfﬁl)

« (G.8)eA,

b b
= Y ol (PIE 1+ phaleal) = DD 10 ol (9171 + 2 160l
(4,8) €A’ (4,8)eA”
—lo'a”| (B'I¢' + Bl

<K ((1 — o) |[of & | = 1o"¢| = 10"¢" || + (1 +€0) Y lazafiao 4

+K <(1 —eo)|of — (o' + ")+ (1+e0) ) ]a;ao /4

2

—Zlo'o (€] + €]

CK(1+20)|o'a"| (€] + €' V'~ + CK|o'a"| (1o'| +|o"]) V7™
2

— 2l (€] + €]

1
< CK|o'o"|(|o'| + |o") Ve~ = 5lo'a"| (1€] + 1)) -

IN
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Since
b 1 /i
AQ < —5|o'a"),

in this case the proof is completed exactly as in Step 1.
(3) Interaction between two small waves of the same family but of different sign.
Assume that ¢’ > 0, ¢’ < 0 and that both belong to the first family, the other
situations being similar. Observe that in this case one must have o] < 0, otherwise
the two incoming wave-fronts would have exactly the same speed. We have

AVE < K(1—eo)|of & [+ 03 .al0sabial = (L+e0)lo’€'| = (1 —e)lo"¢"]
< CK(1+e,)|o'a"[ (1] +1€"]) — 2e00"¢] -
For the interaction potential, we find

A= Y (ot ool (BFIEF |+ 8 s1601))

(.B)eAT

+Z Z (“72&7776‘ (p ’52a’+pj/3|§ﬁ|))
@ (5,8)eAtT

-2
(4,8)eA

= 3 (ool (2114 0 slel) ) — 1o (1€ + 1€ )

(4:8)eA”

<K ((1 = eo)| |0 & | = 1o"€" [ + (1 +e0) D |Uia£2+,a!> 4

[e3

(161 + 8% 51¢51))

+K(1+SO)ZIUJQ\V£* Ia’ "I (1€ + 1)
< CKlo'a"|(I¢ | +IE NV + KoV + CKlo'o"| (o] + |o"]) V™
—§|a’a”\ (IE'T+1€"D
< CK|o'a"| (|o'] + [0") V™ + K|o'¢/ |V~ — %|0"0"| (I€'T+1€"1) -
Since the inequality AQ® < —|o’c”|/2 still holds, using (5.19), we have
AYL < <CK(1 +eo)(1+6) — ;Kb) lo’a”| (|€'] + [€"])

(5.20) + (CKKb(S - ;) 'V + (KKbé - 250) lo'¢/|
<0,

so that AY, < 0 for ¢ sufficiently small.

(4) Interaction between the phase boundary and a small wave.

We consider the case of a 2-wave hitting the phase boundary from the left, the
other case being similar (see Figure 5.2(ii)). By (5.15) and (5.3) we deduce

b+ [ ——
Zp1 |o 1affra| py oy &
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< (C(1+e0) = K(1 = &) |y & | +2C)o |I€7]

< (20 - ;K) los &

where we used the above choice of K.
b
AQE :Z Z |o-f:a0-j,ﬁ| (pl a|§ii_a|+pj ﬂ|§] 5‘)
* (G.B)eAT,
b
< Z Z I ot 05, sllélal + Z Z P slot
o (4.B)EATT, o (4.B)EATT,
<2Cloz | (I&5 | +[€71) V™ +2CK|o7 V)™,
=Y Y ool
o (G.B)eA,
< Clog |V~ .

y (5.19) it follows that
AT < (20(1 +26) — ;K> oz &5 | +20(1 + 26)| oz ||€7]|

(5.21) +20(1+ K)|og [V~

We now counsider the terms referring to the right of the phase boundary. By (5.16)
and (5.3) we have

Zpg |2a€;a|
<2Cloz | (l&5 1+ 1€71),
AQE=Y" > lodacisl (PhLl&ial + 1) sl6l)

o (5,8 AL,

< 20K | (Iez| +1€71) V¥~ + CKlog [VE

AQ* =" > 03,054l

o (5,8 AL,
< Cloy |VF~ .

Therefore,
(5.22) ATE<20(1+(1+ KE96) o | (15| +1€71) + C(6 + KEH)|og IV .
From the inequalities (5.21), (5.22), (5.14), and (5.11), it follows finally that
AT, = (ATZ +ATE 4+ A\£|> KT 4 (TZ* +TE + \é*|) (e’““ - e’“‘)
< (Ar:+ AT+ AR - kjAT] (T2 4 TE +(E]))

< [ (20(3 +36 + KK*6) — ;K> |log & |
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+(20(3 + 36 + KK*'6) — K) \02—”5—‘

+(2C(1+ K) — K)oy [V)™ + (C(6 + KK?*) —K) |oy Wg*} e
<0

by the above choices of the weights. The proposition is proved in Case 1.
Case 2. Let us choose the weights in (4.22) and (4.24). Define

p'iya =1+ ¢,signo q, p; o= Kg(l +e,8ignogq),

pia = Kf(l + go8ign 01 4),

pgﬁa = Kf(l + go8ign 01 4), pg’a =1+ ¢,signozg.q.

Choose first KE and Kg such that

(5.23) (1 +2,)(1 + C8)) ]Rg@b] KR (1—e)KF < 3(1+2,)C,

(5.24) (1 +,)(1 + C6)) ’Rﬁ@ﬁ’ KT (1— e))KE < 3(1+€,)C,

which is possible provided e, = v/¢ and 6 sufficiently small, thanks to the strong
nonresonance condition (2.13). The other weights are chosen similarly to the previous
case, i.e., in the order Kg = Kf, K’ K% K* and K. As usual, choose finally a suitably
small 6.

The estimates in this case differ from the previous ones only in the interaction of
a wave coming from the middle phase against a phase boundary. We now consider
only this interaction in detail.

AY: = C(1+&,) (1 +6+K"6) oy | (|§f| + ’éb") +C6+ K)oy |VE,
AT = ((1 Fe)(1 +05)]Rg@b(K5 —-(1 —so)Kf) lor &7 |
+O(+20) Koy |||+ (1 + COR Koy |V,
ATe < (AT + ATE 4 Ale| Koy V2~ = Ko7 [VE Ko [|=)
< (0(1 + &) (1 +6+K"5> +C+(1+e)(1 +C‘5)‘Rg@b‘K5 -( _€O)KE)
x|ovér]
+ (0(1 +¢) (1 +6+Kb6) +C(1 +e,) K3 +C—’C) \Uf\‘gb_’
+(CE+E") = K) o7 [v¢~ + (1+ CoRKS — K) |o7 [V
<o.

This concludes the proof of Proposition 4.7. 0

Proof of Proposition 4.8. Let v’,u” € D¢, be given, with 8’ > 0 small. We consider
only case (2), since case (1) is simpler.

For i = 1,2, call 2}, « the positions of the phase boundaries in v and u”,
respectively. One can then connect v’ with u” in such a way that each intermediate
state u’ contains exactly two large phase boundaries. For example, assume xj < z <
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T+6 T N

\ 7;1(73 6)
T—06 T

Fic. 5.3. The set Tn(T,96).

xh < zf, the other cases being entirely similar. We first define the path v;: [}, z}] —
Ds,
n(0) ="

—oo,z'Q]U]Q ,00+(

joining v’ with the intermediate function
u'(x if v € |—o00,z5] U]z, 00
wiy— {u@) ifoe]-coaUlef. o,

u'’(z) if x € Jab, 2]

We then connect w with v” by setting
— . .
120 =0T X g X g

The concatenation of «; and -y, yields the desired path. 0

Proof of Proposition 4.10. As we announced in section 4 we give only the proof
of the WU-admissibility of the solutions.

Fix a positive sequence {e,,:n € N} converging to 0. For all n, let u, be the
ep-approximate solution constructed by the algorithm. Call x = A, (¢) the equation
of the leftmost approximate phase boundary in wu,; the other cases are completely
analogous.

Then choose a positive 7. For all n and positive §, define 7,,(7, §) as the following
region of the (¢, z)-plane (see Figure 5.3):

T (7, 6)
telr—674+6,
(5:25) = { () € [0, o[ x R § £ ST AT ()

x> A, (t)

Due to the subsonic hypothesis (2.4), 7,,(7,6) is bounded. Moreover, note that
by (2.1), 1-waves may exit 7,(7,6) only by crossing the phase boundary, while they
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may enter 7,(7,8) only through the bottom right side. Similarly, 2-waves may enter
7T.(7,6) only by crossing the phase boundary, while they may exit 7,,(7, §) only cross-
ing the top right side. Due to (iii) in Proposition 4.1 there is only a finite number
(depending on n) of such exiting or entering waves. Clearly, we can have creation
or cancellation of both 1- and 2-waves inside 7,(7,6). Let us call 7(7,8) the re-
gion analogous to (5.25) but constructed with reference to the exact phase boundary
x = A(t).

The following lemma is crucial; it is analogous to the celebrated Lemma 3.4 of [10]
but we emphasize that its proof is much easier, as a consequence of the wave-front
tracking scheme.

LEMMA 5.1. For all but countably many T and eventually passing to a subsequence
of the approzimate solutions, the following holds: for every ¢ > 0, there exists 6 =
8(e, ) such that for every (t,x) € T(7,8) and for all n large

[tn () — up (T, An(T)4+)| < € .

Proof. Let T, (t) = T~ (un(t,-)). By Helly’s theorem, eventually passing to a
subsequence we define for all t > 0

T(t) = lim Tn(t).

n—-+4oo

Fix ¢ > 0 so small that for all the future constants C' the estimate Ce < 1 holds. For
every 7 apart from a finite set of times (dependent on €), there exists a positive §
such that

T(r+6+)—T(r—6-) <eb.

In Case 2 we eventually further restrict  to ensure that the other phase boundary
does not intersect 7 (7, 6).

Then there exists a positive sequence {8,,: n € N} such that 6, increases, 6, — 6,
and

(5.26) (7 + 6pt) — Tn(r — 8,—) < &°

for n sufficiently large. Choose an arbitrary (¢,z) € 7 (7, §) and consider n sufficiently
large in order that (¢,Z) € 7,(7,6,) and (5.26) holds.

To compute |uy,(t, %) — uy (7, Ay (7)+)], first draw the horizontal line segment S,
joining (¢,Z) with the approximate phase boundary x = A, (¢t). Then, using the
triangle inequality and the known estimate on AT,

|un(t, Z) = un (7, An(7)+)]
< Jun (8, 2) — up (& An () )| + |un (& An (D) +) — un (7, A (7))
< TV (up (5, z):x € [A,(2), T))
+ TV (up, (t, Ap(t)+):t € [T — b6, T+ 60])
<C > |G| + CI (T + 8pt) — Yo7 — 6,—)]

a:o; o Crosses S,

<C Y oial et

a:0;,oCrosses S,

The rest of the proof aims at bounding from above the total quantity of waves crossing
S, and will be achieved by the following two claims.
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Claim 1. For all large n, the total size of 1-waves exiting 7,,(7, 6, ) and the total
size of 2-waves entering 7,,(7, 6,,) are both lower than &*.

Assume that aia exits 7, (7, 6,) at some time t, € [T — 6,7 + 6,]. By (5.3)
and (5.7) or (5.11) in Case 2

S lotal £ (loval +lo2al) < CD 1A ()] < C® <&

by (5.26) and the decreasing of T,,. Here oy ,, o5,
boundary.

The case of 2-waves is entirely analogous.

Claim 2. For all large n, the total size of 1- and 2-waves crossing S,, is smaller
than £3.

As above, let 01, for o = 1,..., be the size of the 1-waves crossing S,. By
eventually prolonging o; , as a null wave, we can assume that oy, exits T, (7, 6y)
through the phase boundary at some time t, € [T — 8,7 + 6,]. By (4.10) in [5]
(which generalizes to the case of many colliding waves our estimates (5.1) and (5.2)),
by the definitions (4.8)—(4.10) or (4.13)—(4.14), by the interaction estimates (5.5)
and (5.6), and by the previous Claim 1

Z lo1,al < Z lo1,a(tat)| + Z |AQ(tn)]

a: 01,4, CTOSSes Sy, ty, interaction time

are the waves hitting the phase

t <t <tqy
<&t o > |AY, (tn)]
tp, interaction time
t <ty <tu
<4 C (T4 64) = Top(r — 6-)|

<&

for a suitable constant C, where @ stands for Q% in Case 1 and for Q" in Case 2.

For 2-waves the proof is entirely symmetric, the only difference being that now
waves are prolonged as null waves backwards.

The lemma is therefore proved. 1]

The admissibility of the solutions follows from this lemma, since we have, arguing
as in [10],

Hm (¢, A (8)4) = u(t, A(t)+).

n—-—+o0o

This concludes the proof of Proposition 4.10. ]
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ON THE ROLE OF MEAN CURVATURE IN SOME SINGULARLY
PERTURBED NEUMANN PROBLEMS*

MANUEL DEL PINOt, PATRICIO L. FELMER', AND JUNCHENG WEI*

Abstract. We construct solutions exhibiting a single spike-layer shape around some point of
the boundary as e — 0 for the problem

e2Au—u+uP =0 inQ,

(0.1) w>0 inQ,
24 =0 on 09,
1%

where Q is a bounded domain with smooth boundary in RV, p > 1, and p < %f; if N > 3. Our

main result states that given a topologically nontrivial critical point of the mean curvature function
of 99, for instance, a possibly degenerate local maximum, local minimum, or saddle point, there is
a solution with a single local maximum, which is located at the boundary and approaches this point
as € — 0 while vanishing asymptotically elsewhere.

Key words. spike layer, singular perturbations, Neumann problems
AMS subject classifications. 35B25, 35J20, 35B40

PII. S0036141098332834

1. Introduction. In this paper, we are concerned with the following singularly
perturbed problem:

E2Au—u+uP =0 inQ,

(1.1) u>0 in §,
%:0 on OS2,

where Q C R" is a smooth, not necessarily bounded domain; ¢ > 0; and 1 < p <
(N+2)/(N=2)if N>3andp>2if N=2.

Equation (1.1) arises from various applications. For instance, it can be regarded
as that satisfied by stationary solutions for the Keller-Segal system in chemotaxis (see
[14], [17], [19]) and the Gierer-Meinhardt system in biological pattern formation (see
[12], [21]).

In [17], Lin, Ni, and Takagi first studied the problem of existence of least-energy
solutions. Subsequently, Ni and Takagi in [19] and [21] showed that the least-energy
solution u. has a unique local maximum point P., which is located on 9Q2. Moreover,
ue — 0 in CL _(Q\P.) and u.(P-) — a > 0 as ¢ — 0. Such a family of solutions

is usually called a boundary spike-layer. Moreover, they are able to locate the spike
by establishing that P. approaches the most curved part of 92, namely, H(P.) —
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maxpeyo H(P), where H is the mean curvature. Later Wei studied general boundary
spike solutions in [23] and showed that for any solution with single peak P. on 01,
Vop, H(P:) — 0, where V,,,_ denote the tangential gradient at P. € 9€2. On the other
hand, if Py € 0Q, V., H(FP) = 0 and the matrix (VEPOH(PO)) is nonsingular, then
there exists for e sufficiently small, solution u. of (1.1) with a single peak approaching
Py. The degenerate case was left open.

In [21], Ni and Takagi constructed boundary spike solutions in the case when
) is axially symmetric. Gui [10] has studied the case when H(P) has a possibly
degenerate local maximum at Py, also constructing multiple-peak solutions at given
local maximum points of H(P). In the single peak case, the result in [10] states that
for any set A C 012, open relative to 0f), such that
(1.2) max H(P) > max H(P)
there exists a family of solutions with a single global maximum point which approaches
a local maximum point of H(P) in A.

In this paper, we will show that a spike-layer family indeed exists concentrating at
any topologically nontrivial critical point-region, a variational linking notion first in-
troduced in [5] in the framework of concentration phenomena in nonlinear Schrédinger
equations.

This notion includes, for instance, the case of local maxima or local minima of
the mean curvature of the boundary, in the same sense as in (1.2), and also that of
a possibly degenerate saddle-point. More precisely, we can consider a local situation
on a set A C 99 where a change of topology of the level sets of H(P) occurs. If ¢ is
the level at which this change takes place in a sense to be made precise below, then
a boundary-spike family of solutions exists, with maxima P € A so that H(P.) — c.

Since we do not want to restrict ourselves to the case of a homogeneous nonlin-
earity, we will consider the more general semilinear Neumann problem

2Au—u+ f(u)=0 in{,

(1.3) u>0 in §,
ou
50 = 0 on 09,

where € is a small positive number. f: R — R satisfies the conditions (f1)—(f5) below:
(fl) fe CHR), f(t)=0fort <0, and f(t) — 400 as t — +o0.
(f2) For t > 0, f admits the decomposition in C'(R)

f@t) = fi(t) = f2(2),

where (i) f1(t) = 0, f2(t) > 0 with f1(0) = f1(0) = f2(0) = f3(0) = 0; and
(ii) there is a ¢ > 1 such that flt—gt) is nondecreasing in ¢t > 0, where as fi—ff)
is nonincreasing in ¢ > 0.
(£3) [f'(t)| < a1 + aztP~! for some positive constants a1, az and 1 < p < ({34
(f4) There exists 7 € (0, &) such that F(¢) < ntf(t),t > 0, where F(t) = fot f(s)ds.
To state the last condition, as in [20], we consider the problem in the whole
space

Aw —w+ f(w) =0,w > 0in RV,
(14) w(0) = max w(z) and w(x) — 0 as |z| — +oo.
z€RN
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It is well known that (1.4) has a solution w, and w is radial and unique (see
[13], [4], [15]). The last condition is stated in (£5).
(f5) L =A — 1+ f/(w) is invertible over H2(RY) = {u € H? : u(x) = u(|z|)}.
We note that the function

fi&)=tP —at?fort >0,1<g<p

with p subcritical and a > 0 satisfies all the assumptions (see [20]).

Let H(P) be the mean curvature function at P € 9Q. In what follows, we state
precisely our assumption on {2 and H. We assume that €2 is a smooth, not necessarily
bounded domain in RV, and that there is an open and bounded set A C 99 with
smooth boundary 0A and closed subsets of A, B, By such that B is connected and
By C B. Let T be the class of all continuous functions ¢ : B — A with the property
that ¢(y) =y for all y € By. Assume that the max-min value

(1.5) ¢ = sup min H(¢(y))
el YeB
is well defined and additionally that
(H1)
in H(y) > c.
min (y) >c
(H2) For all y € A such that H(y) = ¢, there exists a direction T', tangent to A
at y so that

VH(y) - T #0.

Note that A C 9 is an (N — 2)-dimensional set.

Standard deformation arguments show that these assumptions ensure that the
max-min value c is a critical value for H(P) in A, which is topologically nontrivial
(therefore, our results cover that of [10] in the single peak case). In fact, assumption
(H2) “seals” A so that the local linking structure described indeed provides critical
points at the level ¢ in A, possibly admitting full degeneracy.

It is not hard to check that all these assumptions are satisfied in a general local
maximum, local minimum, or saddle-point situation, not necessarily nondegenerate
or isolated. Our main result asserts that there is a family of solutions to problem
(1.1) concentrating around a critical point at the level ¢ of H in A.

THEOREM 1.1. Suppose f satisfies (f1)—(f5) and the mean curvature function H
satisfied (H1) and (H2). Then there exists €g > 0 such that when € < eg, problem
(1.3) has a solution u. with the property that

(i) we has exactly one local maximum point x. and x. € A;

(ii) lime_o H(z:) = ¢;

(iii) limg_o ue(2ze + ex) = w(x) and there exist positive constants ¢, 6 such that

Slo —
0 < uc(x) <c exp (—M> , x el
€
Here w is the unique solution of (1.4).
The proof of this result makes use of ideas developed in [20] and [23] and a
variational scheme similar to that in [5], where it is constructed as a bound state for
the semiclassical Schrédinger equation

2Au—V(z)u+u’ =0 in RV,
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exhibiting concentration near topologically nontrivial critical points of V' (z); see also
the work of the authors in [9]. Related results in this direction can be found in [6]
and [7].

We have recently learned that Li [16] has considered, in the case of a bounded
domain, a different notion of nontriviality not variational in nature. This notion is
implied by our assumptions (H1)-(H2) in case the curvature is C'. Thus, in case
f(s) = uP, with p superlinear and subcritical, and for a bounded domain, our result
is a consequence of the results in [16]. However, Li’s method, relying on a finite-
dimensional Lyapunov—Schmidt reduction, is very different from ours.

On the other hand, our method is also applicable to obtain partial localization
results even in case H is not C*.

Finally, we remark that when p = %, problem (1.1) has been studied in [1], [2],
[3], [11], [18], and [22], among others.

The rest of this paper will be devoted to the proof of Theorem 1.1. In section 2,
we define a modified functional which satisfies the Palais—Smale (P.S.) condition and,
roughly speaking, permits us to restrict ourselves to what happens in A. We then
define a min-max value and by using assumption (H1) we prove that there is a critical
point for the modified functional with this value. In section 3 by using assumption
(H2) we prove that the critical point so found is actually a critical point of the original
functional and we conclude the proof of Theorem 1.1.

2. Preliminary results and set-up of a min-max scheme. In this section,
we first define a modified functional and state some preliminary results. We then set
up a variational scheme and obtain a critical point for the modified functional.

Let f: R — R satisfying (f1)—(f5). We first define an “energy” functional

I (u) = 1/ 2| Vul|? +u? — / F(u),
2 Ja Q
where u € HY(Q), F(u) = [, f(s)ds.
As in [5], we now define a modification of this functional which satisfies the P.S.
condition and for which we find a critical point via an appropriate min-max scheme.
Let p = %, where 7 is defined by (f4). Let R > ﬁ Let a > 0 be the value at
which f(a)/a =1/R. Set

f(s) if s<a,
fs) = 1.
ES if s > a.

The following technical lemma is stated in [10] and can be proved by using local
coordinate systems for JA.

LEMMA 2.1. There exists a subdomain 0Qy C Q such that 9o NI = A and
o0g = 0Q0\0N is smooth and orthogonal to OQ at OA.

We now define

13
9(15) = X F(5) + (1 — x0)F(s) and G(z,€) = / o(x, 7)dr,

where xgq, denotes the characteristic function of €2y.
First we note that g is a Carathéodory function. In addition one can check that
(f1)—(f4) implies that g satisfies the following conditions:
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(gl) g(x,t) =0 for t <0 and g(x,t) — oo as t — oo.

(g2) g(x,t) = o(t) near t = 0 uniformly in z € Q.

(g3) g(z,t) = O(tP) as t — oo for 1 < p < &2 if N > 3 and no restriction on p if
1,2.

(ii) 2G(z,t) < g(z, t)t < > Vi€ RT,z & Qo.
Consider the modified functional

1 1
JE(u):§/QEQ|Vu|2—|—§/Qu2—/QG(:U,u)7 u € HY(Q),

whose critical points correspond to solutions of the equation

e?Au—u+g(u,z) =0 in Q,

2.1
2 Ou =0 on 09Q.
ov

As in [5], J, satisfies the P.S. condition whether €2 is bounded or not. We observe
that a solution to (2.1) which satisfies that u < a on Q\Q( will also be a solution of
(1.3). We will define a min-max quantity for J. which will yield a solution to (2.1)
which turns out to be a solution for (1.3) and thus will be the solution announced by
Theorem 1.1.

To this end, we consider the solution manifold of (2.1) defined as

(2.2) M. = {u e HY(Q)\{0}] /9(62|Vu|2 +u?) = /Qg(x,u)u} .

All nonzero critical points of J. of course lie on M.. Reciprocally, it is standard
to check that critical points of J. constrained to this manifold are critical points of
J. on HY(Q).

Let w be the unique solution of (1.4) and let us consider its energy

(2.3) I(w):%/RN(|Vw|2+w2)— F(w).

RN

For P € 99, we define w! as

z— P
wf—ts7pw< 5 >€Ms,

with t. p > 0. Let us consider the center of mass of a function u € L*(Q) defined as

fQo zuldr

(2.4) Blu) = m
Q

For P € B, it is easy to see that B(w!) = P+ O(e). Hence, there exists a continuous

function 7.(P) such that 7.(P) = P + O(e) and ﬂ(w?(P)) = P for P € B. We now
define

We,p = w.‘ls—g(P) :
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Hence we have 8(w. p) = PV P € B, and by similar arguments as in Proposition 3.2
in [19] we find that, ¥V P € B,

(2.5) Jo(we p) =V {;I(w) —~ve(N —1)H(P) + 0(6)} ,
where
(2.6) yi= %H /RN w'(y)2yndy.

We now consider the class I'. of all continuous maps ¢ : B — M, such that
@(y) = We,y Vy S BO7
and we define the min-max value S. as follows:

(2.7) Se = inf sup J.(p(y)).
pel'e yeB

We note that

(2.8) S, > sup Je(ws,y)
yE€Bo
and
(2.9) Se = inf sup J.(p(y)) < sup Je(we,y).
v€el'c yeB yEB

Hence by (2.5), (2.8), and (2.9), we have

e—0

1
(2.10) lime NS, = 51(11)).

The following is the key result of this section. It implies that S is a critical value
for J..
LEMMA 2.2. For ¢ sufficiently small, we have

(2.11) Se > sup Jo(wey).
y€ DBy

In the rest of this section, we prove Lemma 2.2. To this end we will first prove a
version of a result of Ni and Takagi for the modified functional J. (see Proposition 2.1
in [20]).

LEMMA 2.3. Let Q; C Q be a subdomain such that 0Q, NI = Ay is open relative
to 002 and 891” = 0Q1\0Q is smooth and orthogonal to OQ at ON1. We define

g (20) = X, () + (1 — X0, )F(w), G (2,u) = /0 g (. 5)ds,

and

1 1
Je 0, (1) = */EQ\VUI2+*/u2—/ Ga, (z,u).
2 Q 2 Q Q
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Suppose that ue is a solution of

e?Au —u+ go, (z,u) =0 in Q,

(2.12) u >0 in Q,
% =0 on 09,
such that
(2.13) e N e, (ue) — % (w).
Then we have
(2.14) e (ug) = &V {;I(w) —e(N = 1) H(z.) + o(e)} ,

where x. € 00 N OQ is the mazimum point of u. and v is defined by (2.6). In
particular,

(2.15) Jeq, (ue) > &V {;I(w) — ey zegfll?}r‘(]i)Q(N —1)H(x) + 0(5)} .

Before going into the proof of Lemma 2.3 we state and prove a corollary that will
be useful later.

COROLLARY 2.1. Lete =€, — 0 and u. € M. o, be a family of functions such
that

(2.16) limsupe N J. 0, (u:) <

e—0

I(w),

N | =

where
M., = {uGHl(Q)\{O}|/Q(52|Vu2+u2) /Qggl(:c,u)u}.

Let x. = B(uc) be the center of mass of ue; then x. — 0, and if T is an accumulation
point of {x.}, the following estimate holds:

(2.17) Jeq, (ue) >V {;I(w) —ve(N —1)H(z) + O(E)} .

Proof. Passing to a subsequence we can assume that x. — Z. Let us consider the
modified center of mass defined as

_ fB&(f) zu?

N o w?

@)

(u)

Given 6§ > 0 we then have that

(2.18) B(ue) € Bs(z)
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V small €. In fact, using a concentration-compactness-type argument similar to the one
given in Lemma 1.1 in [5], we find R > 0, a subsequence ¢ — 0, and y. € Q. = ¢~ 1Q
such that

/ v? >o0>0,
Br(ye)
where v.(z) = v.(ex).

Let us assume first that dist(y.,.) — co. Since v, is bounded in H!(.), given
6 > 0 there exists r > 0 such that

/ |Vue|? +u? < 6.
Br11(0)\B(0)

Then we choose an appropriate cut-off function v so that ¢ =1 on B,.(0) and ¢ =0
on B,;1(0) and we find

Ue = Yue + (1 — )ue = we + ve.

If we choose ¢ small enough, we find that for both v. and w. we can find ¢, t? very
close to 1 so that w, = t;w,E and v, = tgv\E are in M, o,. But this implies that lim inf
Je q, (ug) > I(w), contradicting the hypothesis.

Therefore, we must have that dist(y., 9Q:) < C. We can assume that y. € 0.
By the argument given above, taking a sequence 6,, — 0 and using (2.16) we find a
subsequence u. = v + w. with w. — 0.

Finally, using the minimizing character of this sequence u. and Ekeland’s varia-
tional principle we find that u.(x. +cy) converges in H!-sense to a least energy critical
point w of the limiting functional I given in (2.3) in the half space. We certainly have
that z. + eye — = € 99, thus proving (2.18).

Then we have

Jea, (ue) > inf{J. o, (u) | v € M, q,, B(u) € Bs(7)}.

Since the functional J. o, satisfies the P.S. condition, it follows that the latter number
is attained at some function @, € H'(2). Working out a first variation with test
functions supported outside Bs(Z), we see that 4. satisfies the equation

2 At — . + go, (v, 1) = 0 in Q\Bs(Z).

Again, if we set v.(y) = u.(Z. + ey) with Z. = B(u.), then v. converges in the H'-
sense to w in the half space. In particular, elliptic estimates applied to the above
equation imply that @. goes to zero uniformly, away from the ball Bs(Z). Thus we
have that

Je,0, () = Je 0,0 Bas (z) (Ue)

and also U € M, o,nB,s(z)- Let us consider a set {05 so that {3 N Bos(Z) C Qs C
0y N Bss(T), satisfying the hypotheses of Lemma 2.3. Then we obtain

J57521 (’I_LE) > inf Jagz& (u)

u€M; ag

However the latter number can be estimated from below using Lemma 2.3. Doing so
we have

1
Jeo,(te) > € {QI(w) €y xeamsz?rﬁaﬂ(N H(z) + 0(5)} .
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To obtain (2.17), we first use the continuity of H to choose ¢ and then we choose
small enough, according to (2.15). This finishes the proof. O
Now we will give a proof of Lemma 2.3. We start with some preliminaries.
Proof of Lemma 2.3. Since u. satisfies (2.12) and e VJ. o, (ue) is bounded,
u. converges locally in the H! sense to a solution of the limiting equation. Then
a concentration-compactness argument gives that [|i. — w| g1 o — 0 for some

e.ze)

2. € Q, where
Q..p = {yley+ P € Q}, Peq,

and 7ic(y) = uc(ey 4 z-). Moreover, because of (2.13) we have that “G=9% < ¢

and z. € Qy (otherwise, the energy of u. will be at least of the order of e I(w); see
Lemma 1.1 in [5]). Observe that u. satisfies

(2.19) e?Aue — ue + f(us) +he =0,

where he = (1 — xa,)(f(ue) — f(us)). Hence h. = o(1) uniformly and 4. — w in a
C’lloC sense. Furthermore, there exist constants «, 5 > 0 such that

t-(y) < o exp(—plyl).

Next, an argument given in [19] shows that u. has only one local maximum point z.
and z. € 9971 N IN.

We now consider two cases. Let b > 0 so that w(b) = a.

Case 1. If lim inf. _qd(z., 09Q])/e > b, then u. satisfies

52AU6 — Ues + f(us) =0,

and then, by Proposition 2.1 in [20], we have that

Jeq, (ue) = eV {;I(w) —~e(N — 1)H(z.) + 0(5)} ,

finishing the proof of the lemma.

Case 2. lim inf._od(z.,00])/e < b. We see first that we can assume that lim
inf._,o d(z., 0Ql+)/5 = b since the contrary, together with the convergence of u. to w,
implies a contradiction with (2.13).

To prove the lemma in this case we need some work. We next consider some
notation. Let 7. € dQ be such that d(z.,00]) = |z. — Z.|. Then since 9] is
orthogonal to 02 at A;, we have that the projection of Z. onto dA;, which we call
zP, satisfies

|z — 2| |Z. — 2| _

(2.20) — b and 0.

€ €

Without loss of generality, we can assume that v, = —ey, where v,_ denotes the
exterior normal at x. and that Z. = d(z.,0Q] )e§, where e§ — e; as ¢ — 0.

Set x = . + ey, Q. = {y : z- + ey € Q}. For notational convenience in the
rest of the paper, given a function p : 2 — R, we denote by p the function defined
on Q. as p(y) = p(x). We observe that support of the function h. is contained in
Bs. ((Ze — ) /e) N Q., where 6. — 0. This fact follows from the uniform convergence
of @, to w and the exponential decay of w at infinity.
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Now we will study the asymptotic behavior of u.. First we define the function ¢,
as

(2.21) ue(z) = we(z) + e, x €Q,

where w.(r) = w(**=). It is our goal to study the behavior of the function ¢.. The
next lemma provides an important estimate.
LEMMA 2.4. For e sufficiently small, we have

(2.22) lhell i) < ofe)-

Proof. We multiply the equation satisfied by . (see (2.19)) by 2% and integrate

Oy1
by parts to obtain
~ 0. / { N 1 ~2}
h,gi = F Ueg ) — 7U€ 1% d B
/QE oy 0. ( ) 2 1

where vy is the first component of the normal vector. To estimate the right-hand
side of the above equality we J\give a local representation of the boundary near the
origin and find that 11 = ¢ 1;11 a;y; + O(g?). On the other hand, from the radial
symmetry of w we have that

1
(2.23) / {F(w)—wz}yidy—O for i=1,...,N—1.
ORY 2
Then

(2.24) /aQ {F(aa) — ;ag} vidy = o(e).

To finish we observe that since supp(he) C Bas, (be1), for small €, we have that
g:ﬁ — g—;‘i(bel) # 0 for all y € supp(h) and hence

proving (2.22). d R )
Next we study the behavior of the function ¢.. We see that ¢. satisfies the
equation

Ade — (14 do)de + f'(w)de + h? =0 in Q.,

(2.25) _
0%e _ —la—w n 0f)
v eov ° <
where
de = —— (@) — f(w)) - f'(w).

e
We observe that d. — 0 uniformly and we note that w. = w.

A local representation of  near z. is considered next. There is R > 0 and
a neighborhood N, of z. so that (y',yn) € N. N Q if and only if yy > p(y),
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y' € B(0,R), p(0) = z, and Vp.(0) = 0. We observe that if z. — ¢ as ¢ — 0, then
pe — p in C? uniformly, where p is a local representation of the boundary centered
at xg.

Now we get an asymptotic formula for the normal derivative of w. We find, for
y € B(0, £), that

(2.26) et = 5

where (p¢);; denotes the partial derivatives of p. at 0. Here and in what follows we
use the Einstein convention for summations.
In studying the behavior of ¢. we need the limiting equation

(pe)ijyiy; + o(e),

Ap— ¢+ f'(w)p=0in RY,
(2.27) 06 w'(ly))

oyn 2y

PijYiYy; On BRf.

We have the following lemma. ~
LEMMA 2.5. Thereis 1 < q < N/(N —1) so that ||¢c| pa(q.) is bounded and there
are constants a, 3, Ry > 0 so that

(2.28) 6 ()] < a exp(=Blyl)  for |yl > Ro.
Moreover,
(2.29) ¢ = ol L) — O,

where ¢y € HY(RY) is the solution to (2.27).
Proof. Let us assume that ||¢.|| Le(Q.) is not bounded and define the function

‘55 = QBE/HQ;EHLIZ(Q)E)- Then dsg satisfies

Age — (1 +de)ge + f'(w)ge + he = 0 in O,
0.
v

(2.30)

= n, on 0,

where h, = /35/6”(58\\“(05) — 0 in the L! sense and

10w, ~
Ne = —EE/H%HM(QE)'

We observe that n. — 0 uniformly and that it satisfies an estimate of the form
(2.31) ne(y)] < ac exp(=Plyl)  for ye 0.

for some constants a., 3 >0, and a. — 0.
We recall that supp(h.) C Bas_(be1), with 6 — 0. Thus, standard elliptic esti-
mates and comparison arguments, using the facts just mentioned and that ||A. ||« (q. )

is bounded, yield the existence of constants Ry, o, 8 > 0 such that

(2.32) 6=(y)| < @ exp(—Bly|)  for |y| > Ro.
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Since || Ad.|| 1.y < C, a well-known elliptic estimate yields that

(2.33) H@HWW(Q@BRO ) < CRy-

By the boundedness of ngSE in L? we have that for a subsequence (;ASE — (;AS weakly in L9.
Now, (2.32) and (2.33) implies that this convergence is strong in L%, in particular,
¢ # 0. Moreover, ¢ € WH(RY), it satisfies

Ad— ¢+ f'(w)dp =0in RY,
(2.34)

9o ~
82/—]\[ =0on ORY
and
(2.35) 6(y)| < a exp(=Blyl)  for |yl large.

We observe that Vw(0) = 0 and that Vu(z.) = 0; then V. (0) — V$(0) = 0. Thus
hypothesis (f5) and the argument given in the proof of Lemma 4.6 of Ni and Takagi
[20] imply that ¢ = 0, which is a contradiction. 3

Next we can give a similar argument to obtain that the family ¢. satisfies (2.28)
and that, if ¢y is the solution of (2.27), then

(2.36) ¢ = GollLa(.) — O,

finishing the proof of Lemma 2.5. 0
Proof of Lemma 2.3 (finished). We have

-N _ [ Yova+ad) - Fla) - Fla F (1) — F(ie).
o) = [ SOVEP ) F) P+ [ PG - G

=L+

We first estimate integral I. It follows from hypothesis (f5) and Lemma 2.4 that

1) = / (1 - xau)(F(az) — F(a.))

- (-x0,) / () = Fs))ds

(2.37) < /Q (1— yo, )M W) B _ oy

€

Next we study I7; for that purpose, we write

1
I = / 5(\Vw|2 +w?) — F(w) +
Q.

(2.38) + s/ {Vw Vo, +wo. — f(w)g.} + E. = I| + I} + E..
QE
A direct computation using the properties of w yields

(2.39) = %I(w) —e(N = 1) H(z.) + o(e).
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Using integration by parts and the equation satisfied by w we find

2.40 IL=¢ —¢. = o(e),
(2.40) i=e [ God= ol

where the last equality follows from (2.26) and the fact that e¢. — 0 uniformly.
Finally we consider E.: using Taylor expansion we have

e m-2{f o (f Vi - Flu+te6.032) .

For a given large R, we obtain

5/ |V§Z~5€|2:E/ |V¢~>5\2+5/ Vq~5€~1/gz~58
Q. Q:NBR(0) 8(Q-NBR(0))

(2.42) 75/ A¢.-b..
QEQBR(O)C

The first and second term on the right-hand side above go to zero because 5(55 — 0
in CL_and ¢. € WL(Q.). Next, using the equation for ¢. and (2.28) we find that

1
loc loc
the third term also converges to 0, so we conclude that

(2.43) e/|V@F=ouy

€

Using similar arguments we treat the other terms appearing in (2.41). Thus we finally
obtain that E. = o(¢), finishing the proof. |
Proof of Lemma 2.2. Suppose (2.11) is not true; then

(2.44) Se = sup Jo(wey).

YyE€Bo
S, =¢eN {

< 31w = rele+8) +o0)}.

Hence

DN =

I{w) = 7 i (¥ = D) + ofe)

where c+6 < minye g, H(y) for some 6§ > 0 (by assumption (H1)). Then, by definition
of S¢ there exists . € I'; such that

215) o) <V {310 e (e 3) +oa)} vyen

Take a sequence &, — 0 and denote ¢, = ¢,,. Let AT be a small fixed neighborhood
of A and m : AT — A a continuous map which equals the identity on A. Define
dn(y) = m(B(pn(y))) for y € B, where 3 is the center of mass defined in (2.4). We
claim that for large n we have

(2.46) Blealw) €A* and Hbuly) 2 e+ VyeB.
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This immediately yields the desired contradiction. In fact, since ¢, (y) = we,, , for
y € By, it follows that ¢, (y) =y for y € By. Hence ¢,, € I" and by definition of ¢, we
have

(2.47) ¢ > min H(¢n(y)),
y€EB
which is impossible in view of (2.46).
We now prove (2.46). The fact that 8(¢,(y)) € AT is obtained by slightly mod-
ifying the arguments in [5, Lemma 1.1]. Thus, we just need to prove the second
statement in (2.46). Suppose it is not true; then there exists y,, € B such that

6
We can assume that ¢, (y,) — 2o € A and then H(z) < c+ 2.
Next we apply Corollary 2.1 to the family of functions u, = ¢, (y,) and obtain
that

(2.48) To(up) > &N {;I(w) e (c + i) + 0(5)} .

Comparing (2.45) and (2.48) we get a contradiction and thus Lemma 2.2 is
proved. ]

By Lemma 2.2, we have by a standard deformation argument the main result of
this section, namely, the following proposition.

PROPOSITION 2.6. The number defined by (2.8) is a critical value of J.. That is,
there is a solution u. € H' to (2.1) such that J.(u.) = S. V ¢ sufficiently small.

3. Proof of Theorem 1.1. In this section, we show that the solution u. to (2.1)
constructed in Proposition 2.6 is a solution of (1.3). The key step is the following
proposition.

PROPOSITION 3.1. If m. is given by me = max,eoq, U (), then

(3.1) lim m. = 0.
e—0

Before we prove the above proposition, we need the following lemma.
LEMMA 3.2. Let z. be the maximum point of u.; then we have

lim H(z.) — ¢,
e—0

where c is the maz-min value defined in (1.5).
Proof. By Lemma 2.3, we have

(3.2) Jo(ue) = N {;I(w) —e(N = 1) H(z.) + 0(6)}
and then
(3.3) limsup H(z.) < c.

e—0

In fact, assuming the contrary we have H(z.) > ¢+ g for € and ¢ small and then we
have a similar situation as in (2.45), so that following the arguments given from there
we get a contradiction.
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On the other hand, let § > 0 and ¢g € I' be such that

min H (¢o(y)) > ¢ — 6.

Then, by (2.5) and the definition of S, = J.(uc), we have

Je(ue) < sup Js(we,%(y))
yeB

< {Lrw) oo iy () + 000

(3.4) <en {;I(w) —ey(N = 1)(c— &) —I—o(s)}.

From here and (3.2) we obtain
H(z.)>c—6+0(1).

Since § is arbitrary using (3.3) we then conclude with the proof. d

We are now in a position to prove Proposition 3.1.

Proof of Proposition 3.1. Suppose, on the contrary, that m. > 6 > 0. Then let
uc(z:) = max,cqus(x). Then z. € A, M — b > 0, and w(b) = a, and by
Lemma 3.2 H(z.) — ¢ as ¢ — 0. We recall that the function . satisfies

At — e + f(ie) + he = 0 in Q,
(3.5) o
ov

=0 on 092..

Let 7. be a direction, tangent to A. at T2. We assume that T. converges to Ty and
we observe that T Le N, with the notatlonal convention given in the proof of Lemma
2.3. Next we multiply (3.5) by Vi - 7. and we integrate by parts to obtain

2 2
(3.6) / {|qu +% _pa }T ,,_/ hau&
b0, L 2 2

Using the asymptotic expansion (2.21), integrating by parts again, and using the
equation for w we obtain that

9w Jw
o0, OV 8TE

(3.7) = / Ot
Q. OT;

where 4. (t) = w+ te.. For later reference, we write Iy + Iy = I3 above. We first
claim that by slightly modifying 7. we can get I3 = 0. In fact, the normal vector v
near the origin, in a ball of fixed radius Ry > 0, has the form

ve [ [ (T Voo ad - fa)s v

(3.8) =014+ 0(e))en +¢ Z azyi +
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Thus, taking into account that the support of h. shrinks to a point, that he > 0, and
that u. converges to w, we perturb T. so that 7. Ley and I3 = 0, and still keep that
TE — T().

Next we consider I. We observe that

(3.9) /E)RN {Vw - Vo + wey — f(w)qgo} yi = 0,

since the function ¢g, the solution of (2.27), is even on the boundary and so is w.
From here, and taking into account (3.8), (2.28), and the convergence of ¢. to ¢g in

WLh1(€,), we find that T = o(c2) and thus

ow Ow
3.10 / Owdw _ oy
( ) o0, OV OT. (%)

Now we turn to study this last term. For this purpose, we obtain an expansion for
derivatives of w near the origin and on the boundary of .. A direct calculation,
using Taylor expansion of the function w and the local representation the boundary,
with the notation given in section 2, gives

(3.11) wy(y, p=(y)) = we(y, 0) + O(e?), 1<¢{<N-1,
and

ou, _ ew 2w
(3.12) 5, W P=()) = gg(ps)myz‘w + gm(pe)ijkyiyjyk + o(e?).

Using evenness-oddness properties of these functions, we see that
/
w
/ we(y,0)7—pijyiy; = 0,
ORY lyl

and then, computing the integral on 0€2., we see that for any R > 0 we have

/

w
/ w3500 (0 ) iyyiys = O(2).
80.NB(0,R) ly|

We also see that

(3.13) / w@(yvo)ﬂpijkyiyjyk = Kpiir,
ORY ly|

where K is a nonzero constant. Then we conclude that

(3.14) 6%11 = pieTt + o(1).

From here and (3.10), taking the limit as ¢ — 0 we find that

(3.15) VH(z)-To =0

and this contradicts hypothesis (H2). 0

Finally we prove Theorem 1.1.
Proof of Theorem 1.1. By (3.1), we have that

ue(z) <a Vaxe .

Hence u. satisfies (1.3) since f(u.) = f(u.) for z & Q. Since eV J.(u.) — LI(w),
by [19] or [23], we have that u. has only one local maximum point z. and z. € A. By
Lemma 3.2, lim._,o H(z.) = ¢. The rest of the proof follows from [19] and [20]. O
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EXISTENCE OF NONPLANAR SOLUTIONS OF A SIMPLE MODEL
OF PREMIXED BUNSEN FLAMES*

ALEXIS BONNET! AND FRANCOIS HAMEL?

Abstract. This work deals with the existence of solutions of a reaction-diffusion equation in
the plane R2. The problem, whose unknowns are the real ¢ and the function u, is the following:

Au—ca—u—i-f(u):o in R2,
. Oy
(P) Vk € C(—éa, o), u(Ak)/\—» 0,
— 400
vk € C(éa,m—a), u(Ak) — 1,
A—+o0

where 0 < a < 7/2 is given, €2 = (—1,0), and, for any angle ¢ and any unit vector €, C(&,¢)
denotes the open half-cone with angle ¢ around the vector €. The given function f is of the “ignition
temperature” type. In this paper, we show the existence of a solution (c¢,u) of (P) and we give an
explicit formula that relates the speed ¢ and the angle a.

Key words. reaction-diffusion equations, sliding method, maximum principle, travelling waves,
Bunsen flames

AMS subject classifications. 35B40, 35B50, 35J60, 35J65, 35Q35

PII. S0036141097316391

1. Introduction. Bunsen flames are usually made of two flames: a diffusion
flame and a premixed flame (see Figure 1 and the papers by Buckmaster and Ludford
[11], Joulin [23], Lifian [27], and Sivashinsky [31], [32]). In this paper, we focus on
the study of the premixed Bunsen flame. Roughly speaking, the hot products of the
chemical reactions are located above the flame and the fresh gaseous mixture (fuel
and oxidant) is located below (see Figure 1). For the sake of simplicity, we can assume
that a global chemical reaction takes place in the gaseous mixture:

R : Fuel + 0Oy —  Products.

The isotherms (level sets of the temperature) of the premixed Bunsen flame are
conical in shape and, far away from the axis of symmetry, the flame is almost planar.
The underlying subsonic mass flow goes upward from the fresh zone to the burnt gases
with a uniform vertical velocity c.

In this paper, we deal with the stationary states of premixed flames that are
invariant by translation in one of the directions orthogonal to the flow. Consequently,
the mathematical problem only involves two variables (z,y) (see Figure 1). This
situation occurs with Bunsen burners that have a thin rectangular cross section.

Under some additional physical conditions that correspond to the classical ther-
modiffusive model (see Berestycki and Larrouturou [4], Buckmaster and Ludford [11],
Matkowsky and Sivashinsky [29]), the temperature u(z, y), normalized in such a way

*Received by the editors February 12, 1997; accepted for publication (in revised form) November
19, 1998; published electronically November 10, 1999.
http://www.siam.org/journals/sima/31-1/31639.html
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(alexis.bonnet@mines.org).
fLaboratoire d’Analyse Numérique, Tour 55-65, Université Paris VI, 4 place Jussieu, 75252 Paris
Cedex 05, France (hamel@ann.jussieu.fr).

80



NONPLANAR SOLUTIONS OF A MODEL OF BUNSEN FLAMES 81

y hot zone
diffusion flame X (products)

premixed flame
isotherms

Bunsen burner

fresh zone
(reactants)

Fi1G. 1. Bunsen flames (left) and the premized flame (right).

that w ~ 0 in the fresh zone and u ~ 1 in the hot zone far from the reaction sheet,
solves the following reaction-diffusion equation in R? = {(z,y), z € R, y € R}:

(1.1) Au—cg—Zqu(u) =0 in R?

with the following limiting conditions at infinity:

(1.2) VEk € C(—=éy,a),  u(AK) 0
(1.3) VEk € C(éy,m—a),  u(AE) b

where « is a given angle such that 0 < a < 7/2. The vector €3 = (0, 1) is the unit
vector in the direction [Oy) and, for any unit vector € and any angle ¢ € (0,7), C(€, ¢)
denotes the open half-cone with aperture ¢ in the direction &: C(€, ¢) = {E €R?2, k&>
%] ||€]] cos ¢}. We also set C(z, &, ¢) = z + C(€, ¢) for any point z = (z,y) € R2.

The unknowns of this problem (1.1)—(1.3) are both the real ¢, which is like a
nonlinear eigenvalue, and the function u, 0 < u < 1, of class C? in R?. We shed light
here on the fact that looking for the speed ¢, the angle a being known, is equivalent
to looking for the angle «, the speed ¢ being known, as is the case in experiments (see
the comments after Theorem 1.2 below).

The function 1 — u also represents the relative concentration of the reactant. In
(1.1), the terms Au, cg—g, and f(u) are, respectively, the diffusion, transport, and
source terms. The source term f(u), which may take into account the Arrhénius law
and the mass action law, is given and Lipschitz continuous in [0, 1]. Furthermore, one
assumes that it is of the “ignition temperature” type:

(1.4) 30 € (0,1) such that f =0on [0,0] U{l}, f>0on (,1)and f'(1) <O0.

For mathematical convenience, we extend f by 0 outside the interval [0,1]. The
temperature 6 is an ignition temperature, below which no chemical reaction happens.
In the one-dimensional case, the problem is reduced to

u” —cou’ + f(u) =0,
(1.5) { u(—o0) = (()), u(4o0) = 1.
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There have been many works devoted to the solutions of (1.5). We refer to the
pioneering articles of Kolmogorov, Petrovsky, and Piskunov [26] for biological models,
Zeldovich and Frank-Kamenetskii [37] for planar flames, as well as other papers by
Aronson and Weinberger [2], Fife [14], Fife and McLeod [15], and Kanel’ [24]. The
main result is the following: if the function f fulfils (1.4), then there exist a unique
real ¢y and a unique function U(£) (up to translation with respect to &) which are
solutions of (1.5). The real ¢ is positive and the function U is increasing in £&. We
may suppose that U(0) = 6.

In more recent papers, multidimensional curved flames in infinite cylinders ¥ =
Rxw = {(z1,y), z1 € R, y € w}, with smooth cross sections w, have been investigated.
In this case, the temperature u(x,y) solves the equations

0
Au—(c+aly) g +fw) =0 ¥,
1
(1.6) u(—00,+) =0, u(+o0,:) =1,
ou
W 0 on 0%,

where v is the outward unit normal to dw and «(y) is the zj-component of the
given underlying flow (see Berestycki and Larrouturou [5]; Berestycki, Larrouturou,
and Lions [6]; Berestycki and Nirenberg [9]; Vega [33]; Volpert and Volpert [34];
and Xin [36] under periodic conditions). If a(y) = ap does not depend on y, it is
known that (1.6) has a unique solution and that it is planar; namely, it depends
only on the longitudinal variable x;. If the function y — «(y) is not constant, the
solution of (1.6) still exists and is unique, but it is not planar anymore (such solutions
correspond to curved flames). Nonplanar flames may also be observed in infinite
cylinders under different physical conditions: Glangetas and Roquejoffre [18] and
Margolis and Sivashinsky [28] proved that if the single partial differential equation in
(1.6) was replaced with a system of two reaction-diffusion equations, then a bifurcation
toward nonplanar flames might occur.

Let us now come back to the question of the existence of solutions (c,u) of the
problem (1.1)—(1.3). If @ = 7/2, the couple (co,U) is obviously a solution. The
question of the existence of solutions if a@ < 7/2 has so far remained open. In this
paper, we show the existence of a speed ¢ and of a nonplanar—if o < 7/2—function u
defined in R?, which are solutions of (1.1)—(1.3). As a consequence, nonplanar flames
exist for the model (1.1)—(1.3) although this model involves only one reaction-diffusion
equation (and not two such equations) and although the underlying flow is uniform.

In this paper, we prove two main theorems. The first one states the existence of
a solution (c,u) of (1.1)—(1.3) for any angle 0 < a < w/2. The second one deals with
the question of the speed ¢’s uniqueness.

THEOREM 1.1. Let f fulfill (1.4) (“ignition temperature” profile). For any o €
(0,7/2], there exists a solution (c,u) of (1.1)—(1.3), namely,

0
) Au—ca—Z—l—_'f(u)z 0 in R?,
VEk € C(—é2, ), u()\k:)/\—+> 0,
VE € (8,7 — o), u(AE)A—+> 1,
such that
(1.7) c= 2
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Furthermore, 0 < u < 1, u is symmetric with respect to the variable x, and u is
decreasing in any direction k € C(—&, ). The following limiting conditions, which
are stronger than (1.2)—(1.3), also hold:

—

(1.8) u(AE') =0 as A — +oo and k' — k € C(—&, o),

(1.9) u(AE) =1 as A\ — 400 and k' — k € C(&,7 — a).

Finally, for each A € (0,1), the level set {(x,y), u(z,y) = A} is a curve {y =
ox(xz),z € R} and it has two asymptotic directions that are directed by the vectors
(£sina, —cosa). If x, — —o0, then the functions u,(x,y) = uw(z + xn,y + ©ar(zn))
converge locally to the planar function U(ysina — zcosa + U~L(N)).

THEOREM 1.2. Let f fulfill (1.4) and o be an angle in (0,7/2]. If (c,u) is a
solution of (1.1) and (1.8)—(1.9), then

Co

c=——.
sin o

We can see that the speed ¢ = ¢p/sina of the nonplanar flame (for o < 7/2) is
greater than the speed ¢y of the planar flame. Furthermore, the angle « is all the
smaller as the speed c is larger. That is physically meaningful since the curvature of
the flame increases with the speed of the fuel flow. It is worth noticing that the formula
(1.7) has been known for a long time and had been formally derived from the planar
behavior of the flame, far away from its center, along the directions (+sin «, — cos a).
This formula had been used in experiments to find the planar speed cg: indeed, the
vertical speed c of the gases at the exit of the Bunsen burner being known, one can
measure the angle a and the one-dimensional speed cq is then given by the formula
cp = csina (see [31], Williams [35]).

Hence, the results of Theorems 1.1 and 1.2 are not surprising. Nevertheless, they
are the first rigorous analysis of the conical premixed Bunsen flames.

REMARK 1.3. From Theorem 1.1, there is a continuum of solutions (co/ sin o, u)
solving (1.1) and satisfying the simple asymptotic limits u(xz, —o0) = 0 and u(z, +00) =
1 for all x € R. This is in contrast with problem (1.6) mentioned above. However, if
the limits u(z, —o00) = 0 and u(z,+00) = 1 are uniform with respect to x € R, then
(co, U) will be the unique solution of (1.1) up to translation in the variables (z,y) for
U (see Hamel and Monneau [21]).

Open questions.

(1) For each fixed angle o €]0,7/2], do all the solutions u of (1.1)—(1.3) have the
same profile? What kind of a priori monotonicity or symmetry properties do they
fulfill? Are they stable for the evolution problem d;u = Au — cOyu + f(u)? Answers
to some of those questions are given in [21].

(2) Is there any solution (c,u) to (1.1)—(1.3) if & > 7/2? The answer is no and is
given in [21].

(3) Is there any solution (c,u) to the free boundary problem equivalent to (1.1)—
(1.3) and obtained in the limit of “high activation energies”? The answer is yes (see
Hamel and Monneau [22]).

(4) Are there three-dimensional flames and, if so, are they necessarily invariant
by rotation?

Structure of the paper. Section 2 is devoted to solving problems that are
similar to (1.1)—(1.3) but are set in finite rectangles [—a, a] x [—a cot y,, a cot y,] where
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74 is an angle close to a. For those problems, some a priori estimates about the speeds
¢q and the functions u, are established. A technical lemma, which is proved in the
Appendix (section 5), is devoted to determining the behavior of the functions u, near
the corners of the rectangles. In section 3, we pass to the limit a — oo in the whole
plane and we determine the shape of the level sets of the limit function u by resorting
to arguments of the “sliding method” type. In section 4, we prove Theorem 1.2.
REMARK 1.4. The proof of Theorem 1.1, which is detailed in the next sections,
actually allows us to get an independent result about the following problem set in an
infinite strip ¥ = {(z,y) € (—L, L) x R} with oblique Neumann boundary conditions:

Au—cOyu+ f(u) = 0in X,
(1.10) Yy e R, 0Oru(—L,y) =0zu(L,y) = 0,
u(-, —00) =0, u(-,+00) = 1,

where T = (—sina, —cosa) and T = (sina, — cosa). Namely, with the same method
as for Theorem 1.1, it follows that there exists a solution (c,u) to (1.10) such that the
function u is nondecreasing in each direction p € C(€s, ).

2. Solving equivalent problems in finite rectangles. Let us set any real
a>1/a? and v, = a — 1/y/a. The angle v, is such that 0 < 7, < @, 7, — « and
a(coty, — cota) — 400 as a — +oo. Let ¥, be the bounded and open rectangle
Yo = (—a,a)x(—acoty,,acoty,). Call T = (—sina, —cosa) and 7 = (sin o, — cos @)
(see Figure 2). When there is no confusion, v, is often replaced with ~.

In this section, we focus on the questions of the existence and the uniqueness as
well as on a priori estimates of the solutions (¢4, u,) to the following problem:

Aug — coOyug + flug) = 0in g,

91 Vo € [—a,a], uq(z,—acotvy,) =0, us(z,acoty,) = 1,
(21) u, Ou,
Vy € (-acotya,acotna), S=(-ay) = 5=(ay)= 0
y
Cs u=1 acot (v, ) Cy

-a N a X

/

I

|
O

C u=0 - acot(y,) C,

Fia. 2. The rectangle ¥ .
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under the following normalization condition:

(2.2) max  uq(z,y) = 6.

y=—cot a |xz|
—a<z<a
2.1. Existence of solutions of (2.1)—(2.2) and a priori bounds for the
speeds cg.

2.1.1. On the solutions u. of (2.1). Let ¢ be any fixed real. Let us call
(Ci)i<i<a the four corners of ¥,: Ci = (—a,—acotvy), Cs = (a,—acoty), C3 =
(—a,acoty), Cy = (a,acoty) (see Figure 2) and set ¥, = %, \ UL, {Ci}.

Now consider the following Dirichlet—Neumann problem:

Au—coyu+ f(u) =0 in X,
(2.3) Va € [—a,a], wu(z,—acoty) =0, u(x,acoty) =1,
Yy € (—acoty,acoty), Oru(—a,y) = 0zu(a,y) =0.

This problem is the same as (2.1), but the speed ¢ is given in (2.3) and only the
function u is unknown. The following three lemmas are similar to some of the results
in a paper by Berestycki and Nirenberg [7]. The proofs, which will be used several
times in the sequel, are written for the sake of completeness.

LEMMA 2.1. For each speed ¢ € R, we have that problem (2.3) has a solution
Ue N ﬂp>1Wi’f(i}a) N C(Z,), where C(X,) is the space of all continuous functions
m Y,.

Proof. Let (X4,)e>0 be a sequence of bounded and smooth domains such that,
for each € > 0,

4
DI -UlB(Ci’5) C Yge C g,
1=

where B(C},e) denotes the open ball centered on the point C; with radius . Let
€ > 0 be small enough. Consider a smooth vector field p.(z,y) defined on 9%, . such
that pe - ve > 0 on 0%, (where v, is the outward unit normal to 03,.) pe = T
on {—a} x (—acoty +¢,acoty —¢), p =7 on {a} X (—acoty +¢,acoty —e),
and p. = 0 on (—a +¢,a — ) x {£acoty}. Let op.(x,y) be a smooth nonnegative
function defined on 9%, . such that og. = 1 on 0¥, N{y < —acoty + ¢} and
00, = 0on 0%, N{y > —acoty + 2¢}. Last, let o1 be a smooth nonnegative
function defined on 9%, . such that o1 . =1 on 0X,.N{y > acoty —e} and oy, =0
on 0%, N{y <acoty —2¢}. For each ¢ > 0 small enough, the problem

Aue — cOyue + f(us) =0 in Eq .,
pe-Vu+opcu+oi.(u—1)=0 ond¥,,

has a solution u. such that 0 < u. < 1 since 0 and 1, respectively, are sub- and
supersolutions (see Berestycki and Nirenberg [7]).

From the standard elliptic estimates up to the boundary (Agmon, Douglis, and
Nirenberg [1]; Gilbarg and Trudinger [17]), up to extraction of some subsequence,
the functions u. approach a function u,. € pglVVQ’p(EG) N CZOC(ia) as € — 0. The

loc

function wu, is a solution of

Aue — cOyuc + f(ue) =0 in X,
(2.4) Vr € (—a,a), uc(z,—acoty) =0, uc(z,acoty)=1,
Yy € (—acoty,acoty), Oruc(—a,y) = dzuc(a,y) =0.
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Furthermore, we claim that, for each i € {1,...,4}, there exists a function v; defined
in a neighborhood V; of the corner C; such that 7;(C;) = 0 and, for all £ > 0 small
enough,

ifi=1or 2, ue(x,y)

(2.5) ifi=3o0or4, 1—u(z,y)

The proof of this fact is temporarily postponed and will be given in Remark 5.2 in
section 5.

As a consequence, the function u. can be extended by continuity at the four
corners C; of ¥,. In other words, u. € Np>1 VVlicp(i)a) N C(Z,). From the strong
maximum principle and the Hopf lemma, it also follows that 0 < u, < 1 in [—a, a] X
(—acoty,acot). d

LEMMA 2.2. The function u. is increasing in y and it is the unique solution of
(2.3) in Nps i WP (2,) N C(Z4). Furthermore, if f is of class C*, then dyu. > 0 in
3,

Proof. It is based on the sliding method (see [7]). Let u be any solution of (2.3)
in Nys1 W2P(2,) N C(Z,). For any A € (0,2acoty), let v* be the function defined
by v*(x,y) = u(x,y — ) — u(z,y) in the set
(2.6) YA = (—a,a) x (—acoty+ A, acoty).

Since u is uniformly continuous on the compact set 3, and since u(-, —acotvy) = 0,
u(-,acotvy) = 1, there exists ¢ > 0 small enough such that v* is negative in X for all
A in [2a coty — g, 2a cot ).

Let us now decrease A. Suppose that there exists A* > 0 such that v» < 0 in

YA for all A € (\*,2acoty) and v < 0 in ¥X* with equality somewhere at a point
(Z,7) € ). Since 0 < u < 1 in [~a,a] x (—acoty,acot), the function v*" is
negative at the “bottom” [—a, a] x {—a coty+ A*} of the boundary of ¥}". Similarly,
the function v*” is negative at the “top” [—a,a] x {acot~} of the boundary of ¥ .
We also have 9,0 (—a,y) = d:0* (a,y) = 0 for all y € (—acoty + \*,acoty). The
nonpositive function v*" satisfies the elliptic equation

A — cﬁyv)‘* + ez, y)oN =0 in D),

where the function c(z,y) is bounded in ¥)" because of the Lipschitz continuity of
f. Since v* (Z,7) = 0 at a point (Z,7) € £)°, we then conclude from the strong

maximum principle (if —a < Z < a) or from the Hopf lemma (if T = £a) that
v*" = 0in X»". That is ruled out by the boundary conditions on [—a, a] x {—a cot~y+
A*,acotv}.

Hence, there is no such A* > 0. We finally conclude that
Y0 < A < 2acoty, uM(z,y)=u(z,y—N\) <u(z,y) in .

This yields that for any « € [—a,a], the function y — u(x,y) is strictly increasing
with respect to y € [—a cot~y, acot].

If f is of class C!, we can differentiate the equation satisfied by u. From the
strong maximum principle and the Hopf lemma, it follows that dyu > 0 in .

The second part of Lemma 2.2, namely, the uniqueness of the solution u. of (2.3)
in Nps1 W2P(E,) NC(E,), could be proved in the same way. Indeed, if there were

two solutions u, and u’,, we would find as above that u.(z,y — \) < u.(z,y) in X for
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all A € (0, 2a cot ), whence u. < v/, in 3,. Changing u, and u’,, we have u/, < u,. and
finally u. = ul.. O

COROLLARY 2.3. For each ¢, the function u. is symmetric with respect to x.

Proof. Indeed, if u. denotes the unique solution of (2.3), the function a(z,y) =
uc(—x,y) is also a solution. By uniqueness, we have @ = u,. 0

LEMMA 2.4. The functions u. are decreasing and continuous, with respect to c,
in the spaces VVIQOcp(f]a) N C(X,) in the following sense: if ¢ < ¢, then u, > ue in
[—a,a] x (—acoty,acoty) and if ¢ — co, then ue — uc, N Np>1 VVlgof(ia) N C(X,).

Proof. Choose any ¢ and ¢’ such that ¢ < ¢/. We have to prove that u, > uc
in [—a,a] X (—acoty,acoty). For each 0 < A < 2acoty, we define the function
v Mz, y) = ue (2,9 — A) — ue(z,y) in I (see definition (2.6)).

If X is close enough to 2acot<y, we have v» < 0 in ¥} thanks to the boundary
conditions fulfilled by u. and u.. Let us now suppose that there exists A* > 0 such
that v* < 0 in X for all A € (\*,2acoty) and v*" < 0 with equality somewhere in
A", The function v*" satisfies

2.7) AN — 9N + ez, y)oN = (¢ — e)Oyue (z,y — A*) in B,
' 0;0N (—a,y) = 0:v" =0 Yy € (—acoty+ \*,acoty)

for a bounded function ¢(z,y). On the one hand, since ¢ < ¢ and dyur > 0 (from
the first part of Lemma 2.2), it follows from the strong maximum principle and the
Hopf lemma that v* = 0 in ¥A". On the other hand, since 0 < wucue < 1 in
[—a, a] x (—a cot vy, acoty), we have v*" < 0 on [—a,a] x {—acoty+\*,acotvy}. That
eventually leads to a contradiction.

Hence, for all A € (0,2acot), we have

0N = up (2,9 — \) — ue(z,y) <0 in T,

Then, u. > ue in X,. Since v° = uy —u, satisfies equation (2.7), the strong maximum
principle and the Hopf lemma yield that u. > u. in [—a,a] X (—acot~,acot~y).

Now, consider a sequence (c,) such that ¢, — ¢p € R as n — +oo. From
the standard elliptic estimates up to the boundary, and up to extraction of some
subsequence, the functions u., approach a function ., € Np>1 VVlzof (ia) N Cloc(ia).
The function 4., is a solution of (2.4) with the speed ¢g. Furthermore, for each
1 € {1,...,4}, there exists a function T; defined in a neighborhood V; of the corner
C;, such that 7,(C;) = 0 and, for n large enough,

ifi=1or2, U, (T,Y)

(2:8) ifi=3o0r4, 1-—u.,(z,vy)

S

z(x7 y) in ‘/1 e 2711
i(2,y)

(see Remark 5.2). Hence, the function @., can be extended by continuity at the
four corners C;. As a consequence, ., = U.,. Furthermore, since the functions
U, approach u., in any compact subset of Y., the above estimates around the four
corners C; also imply that u., approach u., uniformly in 3,. Finally, since the limit
function u,., is unique, it follows that the whole sequence (u.,) approaches u., as
n — +00. a

INIA

2.1.2. Estimating the speeds. In this subsection, we aim at establishing some
a priori estimates for the speeds ¢, of the possible solutions (¢4, u,) of (2.1)—(2.2).

We first need some preliminary results about the speeds of some one-dimensional
traveling fronts. Remember that the function f has been extended by 0 outside [0, 1].
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Let f2(1) = limy—1, <1 {E—tl) For each 0 < 1 < min(1 — 6,|f"(1)]), let f, be a
C! function in [0,1], fulfilling (1.4) with the ignition temperature § + 7, such that
L) =f)+n, f-n<f, <fin[0,1], and f, < fin (0,1). As for f, we also
extend f, by 0 outside [0, 1]. From the results in [2], [9], [15] and [24], there exists a
unique real ¢{ and a unique function w, solving

{ Uy — cgu% + fuluy) =0 in R,
Up(—00) = =1, uy(0) =0, uy(+o0)=1.

Moreover, u; > 0 in R. With the same arguments as in the paper by Berestycki and

Nirenberg [9], it also follows that ¢co as 7 — 0 (remember that ¢ is the unique
speed for which (1.5) has a solution).
LEMMA 2.5. Under the above notation, there exists a real ai(n) > 0 such that if

a>ai(n) and if ¢ < ¢l /sina, then < Maxy=—cota |zl Uc.
o|<a

Proof. Assume that c is such that ¢ < ¢J/sina. Let u. be the solution of (2.3)
and set v(z,y) = uy(cosa z +sina y) in £,. We want to prove that if a is large

enough, then this function v is a subsolution of problem (2.3).
We have

Av —cOyv + f(v) =wuy —csina uy + f(uy)
= (cg — esina)uy (cosa x +sina y) + f(uy) — fr(uy)
>0 in X,

since ¢ < ¢j/sina, u; >0, and f > f,. Furthermore, for all y € (—a coty,,acotv,),
we can see that

drv(—a,y) = —2sinacosa u,(—acosa +sina y) <0

and that dzv(a,y) = 0. At the “top”of the boundary of X,, we have v(z,acotvy,) < 1
for all x € [—a,a]. At the “bottom” of the boundary of ¥,, the function v is equal to

v(x, —acoty,) = uy(cosa & — acoty, sina).
Since |z| < a, it follows that
cosa = — acoty,sina < (cosa — coty, sina) a — —oo as a — +00

since 7, = @ — 1/y/a for a > 1/a?. On the other hand, the function w, is increasing
and u,(§) — —n as £ — —oo. Consequently, there exists a real a1(n) such that

(a > a1(n)) = (Vz €[—a,qa], v(x,—acoty) <0).

Hence, if ¢ < ¢{l/sina and if a > a4 (n), the function v is a subsolution of problem
(2.3). Remember now that the function u. is a solution of (2.3). As in the proof
of the monotonicity result in Lemma 2.2, we can compare the functions v and wu,.
by using a sliding method. We would find that v < wu. in ¥,. This yields that
v(0,0) = 0 < u.(0,0), whence § < maxy=—cota 2| Ue. That completes the proof of

z|<a

Lemma 2.5. O =
The next lemma states that if the speed c is large enough, then the solution u.
of (2.3) will be below 6 on the set {y = —cota |z|, |z| < a}. Before doing that,
we need a few auxiliary notation. For any ¢ € (0,6), let f¢ be a C' function in
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[0,1 + €] such that f¢ = 0 in (—00,0 —e] U [l +¢&,+00), f€ > 01in (0§ —e,1 +¢),
(14 ¢) := limy1ye, t<ite tf 1( ) exists and is negative. In other words, f¢
fulfills the assertion (1.4) on the interval [0,1+ €] with the ignition temperature § —e.
Moreover, one assumes that f < f¢ < f+ein R and f < f€ in [#,1]. From the
results in [2], [9], [15] and [24], there exists a unique real &§ and a unique function u®
defined in R such that
(u)" — () + f(uS) =0 inR,
{us(— ) =0, u*(0) =0, u°(+o00) =1+e.

Moreover, one has (uf)’ > 0 in R and &=cg as € — 0 (see [9]).
LEMMA 2.6. There exists a real as(e) such that if a > ay () and if ¢ > &/sin”

then 0 > maxX y—— cota |o| Ue.
lz|<a

Proof. Let ¢ be a real such that ¢ > &/sin® a.. Let us set
3cot
0=

2(c — & /sin® a)

and choose a > 3. Let us call ¢ the function defined in R by

cotaw 4, 3cota ,
o) = 8ﬁ3m - éw x
p(z) = —|z]cota+ Sheota if § < 2| <a.

if |z| < 6,

It is easy to see that the function ¢ is concave, is of class C? in R, and that |/ (z)| <
cot o, |¢" ()| < ¢ — &/ sin? a.

Let us now define the function v(z,y) = u®(y — ¢(x)) in ¥, and check that this
function v is a supersolution of (2.3) for a large enough. We have

v = (u¥) (y — p(x))

and Av = (1+ ¢ (@) (W) (y — 9(2)) — " (@) () (y — ().
Hence,

Av —cdyv+ f(v) =1+ ¢ (2)?)(u)"(y -
—(c+¢"(@)) () (y - (w))+ f(u(y = o(2)))
[Co(1+w’(9€)2) —C— "(@)] (W)'(y — ¢(2))
@' (2)*f (us(y - )))
+f( “(y— (@) - fa( “(y — ¢(2))).

On the one hand, we know that (u®)’ > 0 and that 0 < f < f¢. On the other hand,
in view of the definition of ¢, we infer that

Ve eR, &(1+¢ (x)?) —c—¢"(x)<0.
It follows that
Av —cOyv + f(v) <0 in X,.
Furthermore, one has, for all y € (—a cot v,,acot,),

Orv(—a,y) = gsina ¢'(—a) —cosa) (u)'(y — ¢p(—a))



90 ALEXIS BONNET AND FRANCOIS HAMEL

since ¢'(—a) = cot . Similarly, dzv(a,y) = 0 for all y € (—acotv,,acotv,).

At the “bottom” of the boundary of ¥,, one has v(x, —acoty,) > 0 for all
x € [—a,a]. At the “top” of the boundary of ¥, v(z,acoty,) = u®(acoty, — ¢(z))
for all € [—a,a] and

3
Ve € [—a,a], |o(x)] <acota— gﬁcotoz < acota.

Since (cot v, — cot a)a — 400 as a — 400 and since u®(+00) = 1 + ¢, it then follows
that there exists a real ag(e) > B such that if a > as(e) then v(x,acotvy,) > 1 for all
x € [—a,al.

Let us now choose a > as(e). The function v is a supersolution of problem
(2.3). With the same arguments as in Lemma 2.2, we finally conclude that v > wu, in
[—a,a] X (—acoty,,acoty,). In particular, u. < v in {y = —|z|cot o, |z| < a} since

<

0 < 74 < a. As a consequence,
max 4. < max v = max u'(—cota |z| —¢(x)) =u(0) =6. 0
y=—cota |xz] y=—cota |xz] |$‘<a
lz|<a |z|<a -

We complete this section with the following proposition.

PROPOSITION 2.7. Ife and n > 0 are small enough, then there is a real ag(n,e) >
Aq such that, for any a > ag(n,€), problem (2.1)—(2.2) has a unique solution (cq,uq)-
Furthermore, one has

Ny e . 2
cg/sina < ¢, < &/ sin” a.

Proof. Proposition 2.7 is an immediate consequence of Lemmas 2.4, 2.5, and
2.6. Indeed, let us choose ¢ > 0 and > 0 small enough and take ag(n,e) =

max (a1(n),az2(g)): for a > ag(n, ), if ¢ < ¢/ sina, then maxy=—cota = Uc > 0 from
|z|<a

Lemma 2.5 and if ¢ > E(E)/sin2 a, then max y—— cota (| Ue < 6 from Lemma 2.6. From
lz|<a

Lemma 2.4, the functions u. are continuously increasing with respect to c. Hence, pro-
blem (2.1)-(2.2) has a unique solution (c,,uq) and ¢j/sina < ¢, < &/ sin? a. d

2.2. Monotonicity properties of the solutions w,. From Proposition 2.7,
we assume from now on that a is large enough (a > a(no, ), where g > 0, g > 0
are small enough) such that (2.1)-(2.2) has a unique solution (¢4, u,). When there
is no ambiguity, we call this solution (c,u). Set ¥, = (—a,0) X (—acoty,, acot,)
and ¥} = (0,a) x (—acot~y,,acotvy,). Remember that C; (i = 1,...,4) are the four
corners of the rectangle ¥,.

PROPOSITION 2.8. For a large enough, the unique solution (cq,uq) of (2.1)-(2.2)
is such that

(i) for any p = (cosf,sinf) with 7/2 —a < B < m, one has dpu > 0 in
Ya \ {Clv CS};

(ii) for any p = (cosB,sinf) with 0 < B < m/2 + «, one has d,u > 0 in
B4\ {C2,Cu}.

From this proposition we immediately get the following corollary.

COROLLARY 2.9. (i) The function u is nonincreasing with respect to x in X and

nondecreasing with respect to x in L .
(ii) For any nonzero vector p € C(€s, ), one has

Opu>0 in Y, = 2.\ C1,Cs, C3,Cy}.
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Proof of Proposition 2.8. By symmetry with respect to x and by continuity, it
is sufficient to prove that d,u > 0 in ¥, for any vector p = (cos 3,sin ) such that
m/2 —a < B < 7. Let p be such a vector.

Let us temporarily consider the case where the function f is of class C* in [0, 1].
Let z = (z,y) be the generic notation for the points of 3¥,. For £ > 0 small enough,
we are going to compare the functions u(z) and u(z + €p) in the rectangular domain
R. =%, N(Za —ep) (see Figure 3).

Let us first show that

(2.9) u(z) < u(z+ep) on OR.

for £ small enough. Indeed, consider first the “top” and “bottom” boundaries of R..
Set €1 = (1,0). If p-é&; > 0 (as drawn in Figure 3), then those parts of R, are
[—a,—¢ep - €1] X {—acotvy} and [—a,—¢ep - €1] X {acoty —ep - €>}. Since p- € > 0,
inequality (2.9) is satisfied there because v = 0 (resp., u = 1) on [—a, a] x {—acot v}
(resp., [—a,a] x {acot~}) and because 0 < u < 1 in [—a,a] x (—acotv,acoty). The
other case p-€; > 0 can be treated similarly.

On the other hand, on {0} x [—acot~, acot~], we have dyu > 0 from Lemma 2.2
(remember that f is assumed here to be of class C') and d,u = 0 since u is symmetric
with respect to  (from Corollary 2.3). Hence, d,u > 0 on the compact set {0} x
[—acot+y, acot~]. Since the function d,u is uniformly continuous in a neighborhood of
{0} x [—acot~,acot~], it follows from the finite increment theorem that there exists

€p

-acot y 4

Fi1G. 3. The rectangle Re.
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areal £ > 0 such that, if 0 < ¢ < &, then (2.9) is true on the right-hand side boundary
of R., namely, {—ep-é1} x [~acoty,acoty —ep- ] if p- €1 > 0 (as in Figure 3) or
{0} x [~acoty,acoty —ep- & if p-&1 <O0.

We now have to deal with the behavior of the function u on the left-hand boundary
of R. and especially around the corners C7 and C5. We shall use the following lemma
(notice that in this lemma the function f does not need to be of class C* in [0, 1]).

LEMMA 2.10. For each i =1 or 3, there exist a neighborhood V; of C; and a real
€; > 0 such that

(O<e<e and z, z+ep €V;NZ,) = (u(z) <u(z+ep)).

This technical lemma is proved in section 5.

End of the proof of Proposition 2.8. For any point z = (—a,yo) on the left-hand
boundary {—a} x (—acotvy,acot ) of 3,, we have 0;u = 0 and dyu > 0 from Lemma
2.2. Since 7 = (—sina, —cosa) and p = (cos G, sin §) with 7/2—a < 3 < 7, it follows
that d,u > 0. Since u is of class C'! near the point z, there exists a neighborhood V,
of z such that d,u(zx,y) > 0 for any (z,y) € V.NX,. Hence, from the finite increment
theorem, there exists a real €, > 0 such that if 0 < € < ¢, and if the point z + €p is
in V,NX,, then

u(z) <u(z+ep).

Without any restriction, the neighborhoods V; and V3 of C7 and C3, which are
given in Lemma 2.10, can be replaced with two open balls B(C;, ¢;) centered on the
points C; and with radii §; (¢ = 1 or 3). Since {—a} x [—acoty + §1,acoty — 3] is
a compact set, there exists a real € > 0 such that, if 0 < ¢ < g, if z = (x,y) where
y € [—acoty+61,acoty—0b3)], and x = —a in the case p-€; > 0 (resp., x = —a—ep-€}
in the case p- & < 0), then 2z, z+¢ep € R, and

u(z) < u(z+ep).

From Lemma 2.10, we conclude that, if 0 < € < min(ey,e3,), then (2.9) is true
on the left-hand boundary of R., namely, on {—a—ep-€1} x [—acotvy,acoty—ep-és]
or {—a} x [—acoty,acoty —ep - &) according to the sign of p - €.

Finally, we set €9 = min(é, e1,¢€3,€) (remember that & has been defined just before
Lemma 2.10). For any ¢ € (0,p) and for any z € OR,, the points z and z + €p are
in ¥, and we have u(z) < u(z + ep). Next, as in the proof of Lemma 2.2, that is to
say by using a sliding method along the direction €5 and the fact that u is increasing
with respect to y, we find that

u(z) < u(z+ep) in R..

This completes the proof of Proposition 2.8 in the case where the function f is of class
C'in [0,1].

If f is not of class C* in [0,1], we can however approximate it by a sequence of
functions f, of class C* which are such that || f},|| Lo 0,1y < C, IIf — fallLo(0,1) — 0
as n — +oo and which satisfy (1.4) with ignition temperature 6,, — 6 as n — +o0.
Under the notation of Lemmas 2.5 and 2.6, there exist two positive reals €; and 7;
such that, for n large enough, we have f,, < f, < f°', whence f,, < f < f by
taking the limit n — +o00. Thus, as in the proof of Proposition 2.7, for n large enough
and for a > max(aj(n1), az(e1)), we get that there exists a unique solution (¢, uy,) of
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(2.1)—(2.2) with the source term f,, as well as a unique solution (¢, u,) of (2.1)—(2.2)
with the source term f. Furthermore, one has cgl /sina < ¢, < égl / sin? a.

Choose any ¢ > max(ai(n),az(e1)). First of all, up to extraction of some sub-
sequence, we can assume that ¢, — ¢ € R. From the standard elliptic estimates up
to the boundary, we can extract a subsequence w, which approaches a solution u
of (2.4) with the speed ¢ in the spaces Wi’f (24) N Cloe(Xq). Furthermore, for each
1 € {1,...,4}, there exists a function T; defined in a neighborhood V; of the corner
C; such that 7;(C;) = 0 and, for all n’ large enough,

o P
(2.10) ficlor2 uw(ny) ST()

ifi=3o0r4, 1—uy(z,y)

(see Remark 5.2). As a consequence, the function & can be extended by continuity
at the four corners C;. Hence, @ is the unique solution of (2.3) with the speed ¢. On
the other hand, by passage to the limit n’ — oo, the statements of Proposition 2.8
hold good for the function 4. In particular, it follows that @ fulfills (2.2). Finally,
from Lemma 2.4, we conclude that (¢,%) = (cq,uq). This completes the proof of
Proposition 2.8. ]

3. Passage to the limit in the whole plane. In the previous section, we
proved the existence and the uniqueness of a solution (¢, u,) to problem (2.1)—(2.2)
for a large enough. Moreover, we found several a priori bounds for the speeds ¢, as
well as a priori monotonicity properties for the functions u,. We are now going to
pass to the limit a — oo.

PROPOSITION 3.1. There exists a sequence a,, — 00, a real ¢, and a function u
such that c,, — ¢ in R and u,, — u in VVlgo’f(RQ) for all p > 1. Furthermore, the real
c s such that

0 o<
S o sm- «
and the function u satisfies
(3.1) Au — cOyu+ f(u) =0 in R?

0<u<1inR?
V(x,y) €R27 U(l‘,y) :u(_xay)y
(3.2) max  u=u(0,0) =4,

y<—cota |z|
z€ER

(3.3) Vp = (cos B,sin B) such that /2 —a < <m, OJyu(z,y)>0if <0,
’ Vp = (cos B,sin B) such that 0 < 8 <w/2+4+a, OJyu(z,y)>01if z>0.

COROLLARY 3.2. For all p = (cos §,sin ) with /2 —a < 8 < 7/2 + «, one has

dpu >0 in R?.

Proof of Proposition 3.1. Under the notation of Proposition 2.7, choose ¢ =
n = 1/n where the integer n is large enough and set a, = ao(1/n,1/n). For n
large enough, problem (2.1)—(2.2) has a unique solution (c,,uy) in 3,, and one has
c(l)/n/sinoz <c, < E(l)/n/sin2 a.

From the results of [9], we have c(l)/" and E(l)/n — ¢ as n — oo. Hence there exists
a subsequence, that is still called (c,), such that ¢, — ¢ € [cp/sina, o/ sin a]. For
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any compact set K of R? from the standard elliptic estimates, the sequence (ug, )

is bounded in W2P(K) (for a, large enough such that ¥, C K ). Hence, from the
diagonal extraction process, there exists a subsequence that is still called (u,, ) and a
function u such that u,, — u in leo’f(]Rz) for all p > 1. The function u satisfies (3.1).
From the Sobolev injections and since f is Lipschitz continuous, the function w is in
CHM(R?) for all 0 < pu < 1.

Since u(0,0) = lim u,(0,0) = 6 and since 0 < u < 1, the strong maximum
principle implies that 0 < v < 1 in R?. The symmetry of u with respect to = derives
from the symmetry of u,. The assertions (3.3) come from Proposition 2.8. Together
with (2.2), they yield the normalization condition (3.2). ad

3.1. Exponential decay properties. For any z = (z,y) € R?, let us define
TZ = (—|$|, |J"D X (_OO,y) U C((.ﬁ,g),—éb,@) U C((—x,y), —52,0é).

PROPOSITION 3.3. Let g be in R.
(i) There exists a real yo € [—|zo| cot o, 0] such that u(zo,yo) = 6.
(i) Set zg = (x0,yo). The following exponential decay holds in T, :

Vo = (z,y) € Ty, u(z) < 20ecsinacosa f@ol cogh(esinacosa z)ecsin’ o (y=vo)
4+ Qecy—y0)
(3.4)
(iii) A similar estimate is true in C(zo, —€3, ). Namely, for all /2 —a < ¢ <
m/2 4 « and p = (cos p, —sin ), we have

(3.5) YA >0, u(zo—+ Ap) < 26 cosh(cAsina cosacosp) e sin asing

REMARK 3.4. By taking zo = (0,0) and k € C(—¢3,a) in (3.5), it follows that
the function u fulfills (1.2) and (1.8).

COROLLARY 3.5. The function u is increasing in y.

Proof. From Corollary 3.2, we know that u(z,y) is nondecreasing in y. Suppose
that w(zo,yo) = u(zo, y,) where xg € R and yg < y(. It follows that u is equal to a
constant ug in C((xo, yo), €2, &) N C((zo,y}), —€2, ). This constant ug is then a zero
of the function f. Since 0 < u < 1 in R? and f > 0 on (6, 1), we get ug € (0,6]. The
monotonicity properties imply that v < wg in the cone C = C((zo,y(), —€2, ) and
that the function u satisfies

Au—cOyu =0 inC.

In C, the function u reaches its maximum wug at an interior point, for instance, (zo, (yo+
Y6)/2). From the strong maximum principle, u is then equal to ug in C. This is
impossible because u(xg,y) — 0 as y — —oo from inequality (3.5). |

Proof of Proposition 3.3. From the symmetry of v with respect to =, we may
suppose that zg > 0. Let now a > z¢. By Proposition 2.8, we have u,(zg,0) > 6 and
ug (2o, —xg cot ) < 6. Since u, is continuous, there exists a real y, in [—zq cot «, 0]
such that u,(xo,y.) = 6. Since the y, are bounded and since the functions u, ap-
proach u in C} (R?) (for a certain sequence a — +oc), then there exists a real yo
in [~z cot «, 0] such that y, — yo (for a sequence a — o) and u(xg,yo) = 6. This
yields the assertion (i) of Proposition 3.3.

Let zo = (x0,y0). Let us now consider the open trapezium D, whose vertices
are the four points C; = (—a,—acotv,), S1 = (—%0, %), S2 = (Z0,¥a), and Cy =
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(a,—acotv,). The angles between —é5 and each side [S1, C1] and [Ss, Cs] are equal
and, since y, > —xgcota > —xgcoty,, they are not larger than v, and, a fortiori,
they are less than «. Hence, from Proposition 2.8 we have

Ug <0 in D,
and
Aug — coOyug =0 in Dy,.

We are now going to compare u, with the sum of three exponential functions in
D,. Choose any point z; = (x1,y1) in the open set T,. Since y, — yo and v, — «,
there exists a positive real ag such that 2; € D, for all a > ag. Let ¢’ be a real in
(0,csina) — notice that this is possible since sina > 0 and c¢sina > ¢g > 0. Let us
set 7, = 1/y/(acotva + ya)? + (—a + )2 and define

we(z,y) = fi(z,y) + fo(x,y) + f3(z,9),
where
fil@,y) = fecmal(acotvatys) @ +a0)+z0—a)y—ya)),

Fola,y) = Be—ema(—(acot vutya) (=20)+(zo—a)(y=v2))
fa(,y) = e/ sine Wve),

In particular, we have w, > 0 > u, on dD,. Moreover, a straightforward calculation
gives

c/
5— (' —casina) f.

Aw, — co0ywy = ¢ (¢ = carala —z0))(f1 + f2) + —
sin? a

Since ¢/ > 0 and since ¢, — ¢ > ¢//sina, rqo(a — zp) — sina as a — oo, it follows
that

Aw, — ca0ywe < 0 in Dy

for a large enough. From the maximum principle, we deduce that u, < w, in D,. By
passing to the limit a — oo, we obtain

u(xlayl) < eefcl[cosa(fﬂrl’o)fsin a(y1—yo)]
+9€,C,[7 cos a(x1—x0)—sin a(y1—yo)] Jrgec'/sina (1 —v0).

Since this is true for any ¢’ < csina, we can pass to the limit ¢/ — c¢sina and we get
. in2 — — s —
u(x1,y1) < 20 cosh(csinacosa x;) s @ Wi—vo)—esinacosa zo 4 gec(yr—yo),

This can be extended by continuity in T,. This gives assertion (ii) of Proposition 3.3.
In the same way, we could prove that for any xy > 0,

u(z,y) < 260 cosh(csinacosa (x — xo))ecsmz @W=v0) in C(zy, —e3, )

by comparing the function w, with the sum of two suitable exponential functions
in the triangles whose vertices are S; = (—a + 2zg, —acoty,), So = (zo,y0), and
S3 = (a,—acot~y,). This corresponds to assertion (iii) of Proposition 3.3. The case
zo < 0 can be treated by symmetry. 1]
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3.2. Estimating the speed c¢: Proof of formula (1.7). Consider now a
sequence x,, — —oo and, for any x,, let y,, be the unique real such that u(z,,y,) = 6.
One has z, cota < y, < 0. Move the origin at the point (z,,¥,) and consider the
functions

O (7,Y) = u(® + Tn, y + yn) in RZ

From the standard elliptic estimates and the Sobolev injections, the functions v,, are
bounded in VVfof (R?%) for all 1 < p < oo and approach, up to extraction of some
subsequence, a function v € ﬂlVVZQOf (R?), such that

p>

(3.6) { Av—coyp+ f(v) =0 in R?

v(0,0) = 6.

The function v has the following monotonicity properties.

LEMMA 3.6. For any p = (cos ¢, —siny) such that 0 < ¢ < 7/2+ a, one has the
following:

(i) the function v is nonincreasing in the direction p;

(ii) it also holds that

3.7 YA> 0, v(\p) < Qe cAsinacos(a—p) | go—cAsing
(3.7) : p

Proof. Let p be as in the lemma above. Let z = (z,y) be any point in R? and let
A > 0. Consider both points z and z 4+ Ap. Since z,, — —o0, we have x + z,, < 0 and
x4z, + Acosp < 0 for n large enough. From (3.3), we have, for n large enough,

Un(2) = u(@ + Tpyy + Yn) = (@ + xp + Acos@,y + yn — Asing) = v, (2 + Ap).

By taking the limit n — oo, it follows that v(z) > v(z + Ap). This gives the asser-
tion (i).
Consider the set

T, = (_lxnlﬂ |$n|) X (_Oo7yn) U C((xmyn)a _52’05) U C((—xn,yn), _62’a)'

Under the notation of section 3.1, we have T;, = T, _(;, ,.)- Since z,, — —oo, the
points (z,,, yn) + Ap are in T}, for n large enough. Hence, inequality (3.4) implies that

vp(Ap) < 20e~clEnlsinacosa cogh (csin avcos ar (2, + Acos))eA sin® asin ¢
+ 96—0)\ singp.

Since x, — —oo, we obtain at the limit n — oo

_ . _ .2 . _ .
’U()\,O) Sae c)\smacosozcosape cAsin asm«p_|_06 c)\smgp.

This completes the proof of Lemma 3.6. ]

PROPOSITION 3.7. The speed c is equal to ¢/ sin a.

Proof. From (1.7), we already know that cp/sina < ¢ < ¢o/sina. Let us
suppose that ¢ > ¢g/ sin a.

First step: Construction of a supersolution. As in the proof of Lemma 2.6,
we use the same functions f¢ > f such that f* =0on [0,0 —c]U{1+¢}, f¢ >0 on
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(0 —e,14+¢), and f¢ — f as e — 0 uniformly in [0, 1]. For each £ > 0, there exists a
unique solution (¢j, U¢) of

(3.8) { (U= —(Ue) + f5(UF) =0 R,

Us(—o0) =¢, U5(0) =0, US(+00) =1+e¢.
From the results in [9], we have € — ¢ as € — 0. Now choose € > 0 such that
c>7¢/sina

and denote by U the function U*®.
Let us consider the new variables

X =ycosa+xsina and Y =ysina— xcosa.

The variables (X,Y") are obtained from (z,y) by a rotation of angle /2 — « around
the origin.
We are looking for a supersolution of (3.6) of the type

w(z,y) =UY — ¢(X)).
For such a function w, we have
(3:9)  Aw—cdyw + f(w) = AX)U'(Y = ¢(X)) + f(U) = f-(U) = ¢ f-(V),
where
AX) =c5(1+ @) — ¢" —c(sina — cosa ¢').

Since fe > f > 0and U’ > 0, in order to make the right-hand side of (3.9) nonpositive,
it is sufficient to choose a function ¢ in such a way that A(X) < 0. Let ¢ be defined
by
1 in ot |
d)(X) =—— ln(e—csmatanﬂ X + ecslnacot(a—ﬂ)X)
csin o

b

where 8 > 0 shall be chosen later. Set § = cot(a— ) +tan 3. It is easy to check that

1 csina csina
A(X) = (1 1 cosmadx )2 [B(B)e” X+ C(Be X D(B)],
where
B(B) = ¢ — csina — ccosacot(a — ) + ¢ cot?(a — 3),
C(B) = 2(c§ — csina) — ccosacot(a — 3)
+ccos atan 3 — 2¢§ tan B cot(a — 3) + csina 62,
D(B) = ¢ —csina + ccosatan 8 + ¢ tan? 3.

As 3 — 0, we have B(3) — ¢/sin*a — ¢/sina < 0, C(8) — 2(¢; — csina) < 0, and
D(B) — ¢, — e¢sina < 0. Hence, we can choose § € (0,«a) small enough such that

B(3), C(B), D(B) <0.
Let 8 be chosen as above. The function w(x,y) is then a supersolution of (3.6)
in the sense that

(3.10) Aw — cdyw + f(w) <0 in R%,
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y X

B

N alevel set of

F1G. 4. The set By, .

Second step: Initialization of a sliding method. For any \g, we set
(3.11) By, = {z=(Acosp,—Asing) €R? 0 < p <7/2+a, A> Ao}

(see Figure 4).
LEMMA 3.8. There exists A\g > 0 such that

w>v in E).

Proof. Assume that the previous conclusion is not true. There exist then two
sequences 0 < X\, — +oo and z, = (Tn,Yn) = (Ancose,, —Apsing,) € E), such
that w(z,) < v(zy).

Set X,, = ypcosa + x,sina = A\, sin(a — ¢,) and Y,, = y,sina — x, cosa =
—Ap cos(a — ¢y). From (3.6) and Lemma 3.6 (i), it follows that v < 6 in E), and
a fortiori in E),_ for n large enough. Hence, w(z,) = U(Y,, — ¢(X,,)) < 6. Since U
is increasing and U(0) = 6, we get that Y;, — ¢(X,,) < 0. On the other hand, from
equation (3.8) satisfied by U, we have

VE<O0, UE) =ce+(0—e)es.
Hence,
(3.12) w(zn) = U(Yy — ¢(X,)) = 4 (0 — €)e0(m=9(Xn)) < 4(2,).

Since ¢, € [0,7/24 a], up to extraction of some subsequence, the following two cases
occur.

(i) pn — ¢ €]0,7/2 + af. In this case, inequality (3.7) implies that v(z,) — 0 as
n — 400, whereas the left-hand side of (3.12) is greater than the positive constant e.
Case (i) is then impossible.

(ii) ¢on — 0 or m/2 + a. Since 8 > 0 and since each level set of the function
Y — ¢(X) has two asymptotes directed by the vectors p; = (cos 8, —sin 8) and ps =
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(cos(m/2 + o — 3), —sin(m/2 + o — 3)), the distance between the points z, and the
half-lines R4 p;, Ry py necessarily approaches +oo. This finally yields that Y, —
¢(X,) — +o0, whence w(z,) — 1 + ¢ as n — oco. This is ruled out by the inequality
w(zn) <v(zy) < 1.

This completes the proof of Lemma 3.8. 0

Third step: The sliding method. We are now going to slide w in the Y-
direction and compare it with the function v. For all 7 € R, we set

wT(x7y) = U(T +Y — ¢(X))

From Lemma 3.8, there exists a real Ag such that w > v in E),, whence w, > v in
E,, for any 7 > 0 (remember that U is increasing).

The level set {Y — ¢(X) = 1 + ¢/2} of w has two asymptotes directed by the
vectors (cos 3, —sin3) and (cos(w/2 + a — ), —sin(7/2 + a — 3)). Owing to the
definition of E), and since 0 < 3, there exists a real 7 > 0 such that the shifted level
set {Y +7 — ¢(X) =1+ ¢/2} in the direction Y is included in E),.

We now claim that

w, > v in R2.

Indeed, we already know that this is true in E),. But in R?\ E),, we have w, (z,y) =
U(T+Y — ¢(X)) > 14 ¢/2 from the definition of 7. Hence,

wy(z,y) > 14+¢/2 > v(x,y) in RA\E),.
Let us now slide w in the Y-direction. In other words, let us decrease T and call
™ =inf {7 € R, w, > v in R?}.

This real is finite because w,(0,0) — U(—o0) = ¢ < # as 7 — —oo and v(0,0) = 6.
Since U is increasing, we have w, > v for all 7 > 7*. By continuity, we find that

wy+ > v in R%

Since the function w,« satisfies (3.10), the nonnegative function z = w,» — v is
such that

Az — cdyz + c(z,y)z <0 in R?

for some bounded function ¢(z,y). From the strong maximum principle, one of the
following two situations occurs:

(i) w,« = v in R?,

(i) wy+ > v in R%

Case (i) cannot occur since w,« — 1+ as Y — 400, whereas v < 1 in R%. If
case (ii) occurs, let us consider an increasing sequence 7,, — 7*. For each n, owing
to the definition of 7%, there exists a point (2,,y,) € R? such that w,, (7,,y,) <
V(Zpn,Yn). The points (z,,y,) cannot be bounded; otherwise there would exist a
point (z,7) € R? such that w,«(Z,7) < v(zZ,7). The latter is impossible because of
assumption (ii). Now, as in Lemma 3.8, there exists a real Mo such that Wy, > v in
E5,- Since the sequence (7,) is increasing, we have w;, > v in E5 . This implies
that (2, yn) & Es,- On the other hand, since 0 < [ and since any level set of the
function Y — ¢(X) has two asymptotes directed by the vectors p; = (cos 3, —sin ()
and pg = (cos(m/2 + a — (), —sin(r/2 + a — 3)), it follows that w, (zn,yn) — 1+¢
as n — oo. This is impossible since w,, (Tn, Yn) < V(Tn, Yn) < 1.

Finally, the assertion ¢ > c¢y/sin« was impossible. Hence, ¢ = ¢y/sin«. This
completes the proof of Proposition 3.7. 0
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3.3. Convergence of the function u to a planar wave far away from the
axis of symmetry. The case a = 7/2 is treated separately. Indeed, in this case,
from the uniqueness result in Lemma 2.2, the functions u, only depend on y and they
solve ul! — cqul, + f(uq) = 0, ug(—acoty,) =0, ua(0) = 6, and uy(acoty,) = 1. From
the construction given in [9], those functions u, approach the solution U(y) of (1.5)
as a — +oo. This immediately yields the asymptotic limit (1.3) as well as the last
assertion of Theorem 1.1.

In the case where a < 7/2, as in section 3.2, we again consider the function v,
obtained as the limit of the functions v, (z,y) = u(z + =,y + yn), where x,, — —0c0
and w(Zn,yn) = 6. We know that the function v is nonincreasing in each direction
p = (cosp, —sin p) such that 0 < ¢ < 7/2 + «. Furthermore, v has an exponential
decay in the set {A(cosp, —sinp), A > 0,0 < ¢ < 7/2 + a} of the type (3.7).

Our goal is to prove that v is actually equal to the planar wave U(Y') = U(y sina—
zcosa). We divide the proof into four main steps.

First step: Construction of a supersolution. We still use the variables
X =ycosa+zxsina and Y = ysina —x cosa. In the previous section, we considered
a supersolution of (3.6) of the type w(zx,y) = U¢(Y —¢(X)), which had two asymptotes
directed by the two vectors p; = (cos 8, —sin 8) and py = (cos(w/2+a—/), — sin(w/2+
a—f)) (8 >0 was a small angle).

Now, consider the function w defined by

w(z,y) =UY —o(X)),
where U is the unique solution of (1.5) such that U(0) = 6 and where
B(X) = _% In(1 4 ecocora X)
Since ¢ = ¢g/ sin «, we have
(3.13) Aw — cdyw + f(w) = —¢'(X)2f(UY — #(X))) <£0 in R%

Second step: Initialization of a sliding method. Let iA(X) be the function
defined as follows:

0 if X <0,
h(X)_{ —Xcota if X >0.

Set By = {A(cosp, —siny), A > 0,0 < ¢ <7/2+a} ={Y < h(X)} (this definition
is the same as (3.11)). We claim that

(3.14) w>wv in Ey.
Indeed, let (x,y) = (Acosp, —Asing) € Eg with A > 0and 0 < p < 7/2+ . We
have X = Asin(a — ¢), Y = =X cos(a — ¢), and
w(z,y) = U(=Acos(a — @) = p(Asin(a — ©))).

From Lemma 3.6 (i) and since v(0,0) = 6, one has v < § in Ey. Hence, inequality
(3.14) is immediately satisfied if w > 6. Consider now the case where w(z,y) < 6.
Since U(&) = fe®¢ for € < 0, it follows that

w(z,y) = U(=Acos(a —¢) — ¢(Asin(a — ¢)))

_ 9600(_)\COS(O¢_L’D)+$ln(l_,’_ecO)\cotasin(a—cp)))
— e(e—c)\sinacos(oz—ap) + e—cAsilup)

> o(e,y) by (3.7).
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For any 7 € R, we set w,(x,y) = U(T +Y — ¢(X)). Since U is increasing, we
have

(3.15) Vr >0, w,>v in Ey.

On the half-line {Y = 0, X < 0} of OEy, we have Y — ¢(X) = —¢(X) > 0. On the
other half-line {Y = —cota X, X > 0} of OEy, we have Y — ¢(X) = —cota X +
1/coIn(1 + e cte Xy > 0. Thus w, > U(7) on E,.

Since f/ (1) = limy—1, 4<1 % < 0and f =0 on [1,00[, there exists a real
e € (0,1 — ) such that

(3.16) (t<se[l—gl]) = (f(s)f(t)g f/_2(1) (st)§0>.

Since U is increasing and approaches 1 at 400, there exists a real 71 > 0 such that
(3.17) YT >T7, w;>1—¢condEy.

Since the function w increases with respect to Y, we finally conclude from the defini-
tion of Ey that

VTZTh 'lU-,—Zl—E in Rz\E().

LEMMA 3.9. For all T > 11, w, > v in R2.

Proof. Choose any 7 > 7. By (3.15) and since 71 > 0, we already know that
wy > v in Ey.

Let Q be the open set Q, = R?\Ey N {w, < v}. In order to prove Lemma 3.9,
the only thing we still need to prove is that Q+ is empty. Set z = w, —v. From (3.6)
and (3.13) we have

Az —cdyz < f(v) — f(w,) in R%

In Q+, the function v satisfies 1 > v > w, > 1 — ¢ from (3.17). From the choice of ¢
(see (3.16)), we finally get

(3.18) Az —cdyz+ f1(1)/2 2 <0 in Q.

If Q, is not empty, define —§ = infg, 2 (we have —e < —¢ < 0) and consider a
sequence (&,,y,) € 4 such that z(x,,y,) — —6 as n — oco. From the standard
elliptic estimates, Vz is bounded in R2. There exists then a real > 0 such that
the open ball B((,,y),r) lies in Q4 for n large enough. The functions z,(x,y) =
z(x+xn,y+yn) approach, up to extraction of some subsequence, a function Z defined
at least in B((0,0),r). This function Z reaches its minimum —6 < 0 at the point
(0,0) and it satisfies (3.18) in B((0,0),r). This is clearly impossible since f’ (1) < 0.
Hence, Q) = 0 and w, > v in R? for all 7 > 7. 0

Third step: Sliding method. We now decrease 7 and we are going to prove
the following lemma.

LEMMA 3.10. There exist two reals 7%, Y and a sequence of points (zn,yn) such
that the coordinates (X,,Yy) satisfy X,, — —o0, Y, — Y, and

v (2,y) =0T + T,y +yn) — UFT*+Y +Y) asn — oo
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in the spaces WP (R?) for all p > 1.
Proof. Call

E={r, w, >vin R?}.
The set £ is not empty from Lemma 3.9. Let us define
7" =1inf &.

The real 7* is finite since w, (z,y) — 0 as 7 — —oo for any (z,y) € R%. By continuity
with respect to 7, we have

Wrx > V.

Since the function w,~ is a strict supersolution of (3.1) in the sense that it satisfies
(3.13), the strong maximum principle yields that w,~ > v in R2.

Remember that ¢ satisfies (3.16). Owing to the definition of w, there exists a real
A > 0 such that

(3.19) we>1—¢/2 on {Y =h(X) + A}

Let usset Oy ={Y > h(X)+ A} and Q_ = Ey = {Y < h(X)}. By (3.6) and Lemma
3.6, we have already seen that v < @ in Q_. Last, let B={h(X) <Y < h(X)+ A} =
R%\(Q4 UQ_) (see Figure 5).

Comparison of wr«_s and v on 4. Since the function w is Lipschitz continuous
and fulfills (3.19), we have w,«_s > 1 —¢e on 00y = {Y = h(X) + A} if 6 € (0,6p)
for 69 small enough. Two cases may occur:

(i) There exists 61 € (0,8p) such that w,«_s, > v on 8.

(ii) For n large enough, there exists a point (z,,y,) € 94 such that

(320) wT*—l/n(Inayn) S U(Inayn)'

Study of case (i). In this case, we argue as in the proof of Lemma 3.9 and conclude
that wy«_s, > v in Q4. As a consequence, for all § € [0,6;], one has w,«_s > v in
Q..

FiG. 5. The sets Q4+, Q_, and B.
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Study of case (ii). In this case, the points (x,,y,) cannot be bounded; otherwise
there exists a point (Z,7) € 004 such that w.«(Z,7) = v(Z,7). But we have already
seen that w,- > v in R?. Hence one of the following situations occurs:

(ii)(a) There exists a subsequence of (z,,y,) such that X,, — —oo, and ¥,, = A.
We set

Wy (T,y) = wes (T + Ty, Y + Yn) in R?,
vp(z,y) =v(@+Tn,y+ yn) in R2.

Up to extraction of some subsequence, the functions v, approach a solution vy, of
(1.1) and the functions w,, approach the function we = U(7* + A+7Y) in the spaces
W2P(R?). At the limit n — 400, we get

(3.21) Woo > Voo in RZ.

Since the function w, has bounded derivatives, we conclude from (3.20) and (3.21)
that we(0,0) = v5(0,0). Now, both functions v and wes solve (1.1). From the
strong maximum principle, we conclude that

Voo = Weo =U(T"+A+Y).

That gives the conclusion of Lemma 3.10.

(ii)(b) There exists a subsequence of (z,,,y,) such that z, — 400, y, = Asina.
We again normalize the functions w,~ and v as in case (ii)(a). Under the same
notation as in case (ii)(a), we have wy, = U((1/sina) (y + Asina) + 7*) > vy, and
Woo(0,0) = 150(0,0). On the other hand, the function w is a solution of

Aoy — cOyos + flwee) = (1 —1/sin* ) f(U((1/sina) (y + Asina) + 7%)).

Since o < /2, the function we, is then a strict supersolution of (1.1), whereas v is
a solution. This is ruled out by the strong maximum principle.

As a conclusion of this part, only the cases (i) or (ii)(a) may occur and case (ii)(a)
leads to the conclusion of Lemma 3.10.

Comparison of wr«_s and v on J)_. As above, only two cases may occur:

(i") There exists 63 € (0, 6p) such that w,«_s, > v on IN_.

(ii’) For n large enough, there exists (x,,y,) € 9Q_ such that

wT*—l/n(xna yn) < ’U(l‘n, yn)'

If case (i) occurs, then, for any 0 < § < 63, we have w,«_g > v on 9Q_. Since
f=0on/0,0] and v <0 in Q_, with the same method as in the proof of Lemma 3.9,
we would actually find that w.«_s > v in Q_ for all 0 < § < ds.

If case (ii’) occurs, we can argue word by word as in case (ii) above. That leads
to the conclusion of Lemma 3.10.

Completion of the proof of Lemma 3.10. To complete the proof, the only thing
left to consider is the case where both (i) and (i’) occur. Set 85 = min(éy,82). Thus

(3.22) V6 €10,03], wrp_s>v in QL UQ_.
From the definition of 7%, for any n > 1, there exists a point (z,,y,) such that

w'r*—l/n(xna yn) < U(xna yn)
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By (3.22), the points (x,,y,) are in B for n large enough. Consequently, up to
extraction of a subsequence, one of the following situations occurs:

(i,i")(a) X, — —00, Y,, = Y €0, A].

(i,i")(b) x,, — +00, Yy, — 7 € [0, Asina]. The latter can be treated in the same
way as the case (ii)(b) above: it is ruled out by the strong maximum principle.

Hence, only case (i,i’)(a) may occur and, as in the case (ii)(a), we get the conclu-
sion of Lemma 3.10. O

Fourth step: Proving the planar behavior of u far away from the axis of
symmetry. We are going to use here the (X, Y") coordinates. Fix a point (X,Y) € R2.
With the notation of Lemma 3.10, we have X > X,, for n large enough. Since v is
nondecreasing in the direction X, it follows that

v(X,Y) >v(X,,Y)=v,(0,Y - Y,)

for n large enough. Since Y,, — Y and since v has bounded derivatives, we conclude
from Lemma 3.10 that

v(X,,Y) = U(T*+Y) as n — oo,

whence

v(X,Y)>U(T"+Y).
On the other hand, from the definition of 7%, we have

v(X,Y)<U(T*4+Y — ¢(X)).
By summarizing the previous results, it follows that
(3.23) UT*+Y)<v(X,Y)<U((*+Y — (X)) in R?
Now, for any Xg > 0, consider the function
wXo(z,y) = U(Y — ¢(X — Xp)).

We could compare the functions wX° and v by arguing in the same way as above.
First, the function wX¢ satisfies (3.13). Second, instead of (3.14), it is easy to check
that

Vr > Xgcota, wX0:=U(r+Y — d(X — Xo)) > v in Ey.

T

Furthermore, we have Y — ¢(X — X)) > —Xj cot a on OFEy. Hence, there exists a real
71 > 0 that we can choose greater than X cot @ such that

Vr>1, wXe>1-¢ ondE,
with the same € as in (3.16). As in Lemma 3.9, it follows that
Vr>7], wXe>win R

Lemma 3.10 can be applied to the function w™°. As for (3.23), we get the existence
of a real 7* such that

(3.24) UF +Y)<v(X,Y)<UF +Y — (X — Xp)) in R?
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By taking the limit X — —oo in (3.23) and (3.24) and by using the monotonicity of
U, we conclude that 7% = 7.
As a consequence, for all Xg > 0, we have

UT*+Y)<v(X,)Y)<U(T*+Y — ¢(X — Xp)) in R%
We pass to the limit Xy — 400 and obtain
UT*+Y)<u(X,Y)<U(T*+Y) in R

Since v(0,0) = U(0) = 0, it follows that 7% = 0. In other words, the function v is
actually nothing but the planar function U(Y). Last, the function v, which is the
limit of a subsequence of the functions v, (x,y) = u(x + x,,y + yn), does not depend
on the sequence z,, — —oco. We conclude that the whole sequence (u,) approaches
the function U(Y).

So far, we have proved that, for any x € R, there existed a unique real y = @g(x)

such that u(x,y) = 6. Furthermore, for any sequence x,, — —oo, the functions
un(2,y) = u(x + xn,y + @o(x,)) approach the planar function U(Y) = U(ysina —
T cosa).

Let A € (0,1). We shall now prove that the level set {(x,y), u(z,y) = A} is a
curve {y = p)(z), x € R}.

First of all, the function u is increasing with respect to y. For each x € R, set
P(z) = limy— 4o u(z,y). In the set Q@ =R x (0,1), let us define the functions

tn(z,y) = u(z,y +n) in Q.

They still satisfy (3.1). From the standard elliptic estimates, those functions i,
approach, up to extraction of some subsequence, a function u,, that is a solution of

Al — cOytis + f(Uog) =0 in Q.

But this function vy, (z,y) is actually identically equal to the function ¢(z). Hence,
1 fulfills

W'+ f(®) =0 inR.

On the other hand, for any y € R, the function z — wu(x,y) is symmetric, non-
increasing in = for < 0, and nondecreasing for x > 0. The same property holds
well for the limit function . Thus, 0 is a minimum point of ; whence %" (0) > 0.
Furthermore, 9" (0) = —f(¢(0)) < 0. Hence, ¥"'(0) = f(¢(0)) = 0. In other words,
1 (0) is a zero of the function f. Since t(0) > u(0,0) = @ and since f is positive on
(0,1), we conclude that ¢(0) = 1 and finally that ¢ = 1.

Hence, for any = € R, u(z,y) — 1 as y — +o0o. Furthermore, u(z,y) — 0 as
y — —oo from (3.5) applied in zo = (0,0). Since u is continuous and increasing in y,
we conclude that there exists a unique y = ¢ (x) such that u(z, px(z)) = A

Let () be a sequence such that x,, — —o0 as n — oo and let K be the compact
set

K ={(X,Y) e R% |X] < 2cota [UT'(N), Y] < 2(UT' (N[}

We know that the functions u,(z,y) = u(x + x4,y + o (z,)) approach the function
U(Y) =U(ysina — z cos ) uniformly in K. For any € > 0, there exists an integer ng
such that if n > ng, then

un (0, (1/sina) UH(A) —e) < A and u,(0,(1/sina) U™ (A) +¢) > A
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Hence, for n > ng, one has
©o(xn) + (1/sina) U (N) — e < oa(w,) < @p(xn) + (1/sina) UH(N) +e.
It then follows that
ox(zn) — o(xn) — (1/sina) UTH(A) as n — oo.

Since this limit does not depend on the sequence z,, — —oo, we conclude that,
for any A, X € (0,1),

oxa(x) —on(x) — (1/sina) (UHA) = U (V) as 2 — —o0.

The same limit also holds as x — +o00 by symmetry.
In particular, that implies that the functions @, (z,y) = u(x + xn,y + @a(zn))
approach the function U (Y + U~1())) in W27 (R?).

3.4. Asymptotic directions for the level sets of u. Let k be a vector in the
open cone C(é3, ™ — «). We are going to prove that the function w fulfills the limiting
condition (1.3), namely, that u(AE) — 1 as A — +oo. By symmetry with respect to
z and since u(0,y) — 1 as y — 400, it is enough to treat the case of a vector k such
that k- & < 0. We can write k = (—sin g, — cos B) with a < § < 7 (§ is the angle
between k and —¢&, if one goes clockwise).

Let 0 < e < 1. We shall show that, for A large enough, we have

uw(\k) >1—e.
Consider the compact K = [—1,1] x [-2cot a, 2 cot o] and the functions
un(x7y) = U((E -—n,y+ 901—5/2(_77‘))'
From the previous sections, these functions u,, converge uniformly in K to the function
U(ysina — zcosa+ U1 —¢/2)).
Let S be the segment between the points (0,0) and (—1, — cot ). The functions

u, converge uniformly to 1 — /2 on S. Since u is increasing in y, we deduce that
there exists ng large enough such that

(325) vn > no, Vz € [_n - 17 —TL], @175(56) < (10175/2(_,”) +cot o (:L‘ + n)

Similarly, since a < 8 < m and since U is increasing, the sequence (u,(—1, — cot((a+
B3)/2))) approaches 1 — 7, as n — oo, with 0 < 1 < £/2. Hence, there exists nj, > ng
such that

V> ng,  @rocp(—n—1) <@g ja(—n) — cot((a + 5)/2).
With an immediate induction, we get that
(3:26)  VnZnh @1spp(—n) < p1_esa(—np) — cot((a -+ B)/2)(n — n).

Putting together (3.25) and (3.26), we have, for all n > n{ and for all z €
[-n —1,—n],

P1-c(z) < P1e/a(—np) + cota (z +n) — cot((a + B)/2) (n —np).
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Since cot a > cot((a + 3)/2) and since x +n < 0 in the previous inequality, we get
Vo < —ng,  p1-c(x) < 1oc/2(—np) + cot((a+ B8)/2) (z +np).

By putting x = —Asin 3 in the last inequality, and since 8 > «, we conclude that, for
A large enough,

Y1-e(—Asin ) < —Acos .

Remember that k =
follows that u()\E) > 1 — ¢ for X large enough. That implies the required formula
(1.3).

Since (1.3) is true for any ke C(€2, ™ — ) and since w is increasing with respect
to y, the stronger limit (1.9) also holds.

Furthermore, for any p € C(—¢é5, a), we already know that u is nonincreasing in
the direction p. Hence, for any 7 > 0, the function z = u((x,y) + 7p) — u(x,y) is
nonpositive and it satisfies a linear elliptic equation of the type Az —cd, +c(z,y)z =0
in R? where c(z,y) is a bounded function. Since u(Ap) — 0 (resp., 1) as A — +o0
(resp., A — —o0), the function z cannot be identically 0. The strong maximum
principle implies then that z > 0 in R2. In other words, the function u is decreasing
in the direction p.

Last, the limiting conditions (1.2) and (1.3) imply that each level set {y =
oxa(x), v € R} = {u = A} of the function u has two asymptotic directions that
are directed by the vectors (+ sin a, — cos a).

(—sin 8, —cos B) and that u is increasing with respect to y. It

4. Uniqueness of the speed c. In sections 2 and 3, we have proved the ex-
istence of a solution (c,u) of (1.1)—(1.3), (1.8)—(1.9) with the speed ¢ = ¢¢/sin « for
any angle « € (0,7/2].

Choose an angle « € (0,7/2] and let (¢, u) be a solution of (1.1)—(1.3), (1.8)—(1.9).
First of all, since f is extended by 0 outside [0, 1], the strong maximum principle
implies that 0 < u < 1 in R2. We shall now prove the equality ¢ = ¢o/sina. We
divide the proof into three main steps.

(1) Let us consider the case where 0 < o < 7/2 and let us suppose that ¢ <
¢o/ sina. For € > 0 small enough, let f. be the function defined in [—¢,1 — €] by

_ [ 1) on [—¢, 1 - 2],
fe(s) = { min (f(s), (1 —e—3s)/e f(1—-2¢)) on [18—25,16—5}.

Furthermore, we extend the functions f. by 0 outside [—¢,1 — ¢]. For € > 0 small
enough, f. is Lipschitz continuous in [—¢,1—¢], (fe)_(1—¢) :=limy—1_¢, t<1-¢ t’:fl(j_)e
exists and is negative, and f. fulfills (1.4) on [—e, 1 —¢] with the ignition temperature
6. Moreover, we have f. < f and the functions f. approach f uniformly in [0, 1] as
e — 0. From the results in [2], [9], [15], [24], there exists a unique couple (c,u,)

satisfying

(4.1) ul —coul + fe(ue) =0  inR,
‘ ue(—00) = —¢, u:(0) =0, u(+00) =1-—-=e.

Furthermore, we have ¢. < ¢g and ¢. — ¢p as ¢ — 0 [9].
Since ¢ < ¢p/sina and 0 < a < 7/2, there exist a real € > 0 small enough and
an angle o such that 0 < o < @/ < 7/2 and ¢ < ¢./sina’ < ¢p/sina. Set

v(z,y) = us(ysina’ — xcosa’).
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Let us first check that v is a subsolution of (1.1). Indeed,

(4.2) Av —coyv+ f(v) =ul —c sind ul + f(ue)
’ = (ce —csina)ul + f(ue) — fo(ue) >0 in R?
since ¢ > ¢ sina/, u. > 0, and f > f.
We now claim that there exists 7 > 0 such that

(4.3) v(r,y —7) < u(z,y) in R2
If not, then for any n € N, there exists a point (x,,y,) € R? such that
(4.4) (T, Yn — 1) = uc(sind (y, —n) —cosa x,) > u(x,,yn)-

The points (z,, yn) are not bounded; otherwise the left-hand side of (4.4) approaches
—e, whereas the right-hand side is nonnegative. Write (., ¥n) = An (sin @, — cos ;)
with —7 < ¢, < m: @, is the angle between (x,,,y,) and the vector —&; if one goes
counterclockwise. We have \,, — +00. We can assume, up to extraction, that the
sequence (g, ) approaches ¢ € [—m, 7] as n — +o0.

If —o/ < p<m—a, then

V(Tn, Y — 1) = ue(—Apsin(a’ + ) —nsina’) — —e as n — oo.

This is ruled out by (4.4) since u > 0.

In the other case, one has — 1 < ¢ < —a/ or 7 — &’ < ¢ < 7. In particular,
¢ € [-m,—a) U (a,7]. The limiting condition (1.9) implies that u(z,,y,) — 1 as
n — oo. This contradicts (4.4) because u. <1 —¢.

As a consequence, (4.3) is true. Next, decrease 7 and define

™ =inf {r € R, v(z,y — 7) < u(z,y) in R?}.

This real 7* is finite because there are some points (x,y) where u(z,y) < 1 — e and
v(z,y —7) — 1 —¢c as 7 — —oo. For each n € N*| there exists a point (z",y") such
that

v(z",y" — 7" +1/n) = u(sina’ (y* — 75 +1/n) —cosa’ ™) > u(x™,y").

With the same arguments as above, we claim that the points (z”,y™) are bounded.
Hence there exists a point (7, 7) € R? such that v(Z,y—7*) > u(Z, 7). Moreover, owing
to the definition of 7*, we have v(z,y — 7*) < u(x,y) in R%. The function z(z,y) =
v(z,y — 7*) — u(z,y) is nonpositive and reaches 0 somewhere in R2. Furthermore,
from (1.1) and (4.2), it satisfies Az — cdyz + f(v(z,y — 7*)) — f(u) > 0 in R?. This
implies that

Az — cOyz + c(z,y)z > 0

for a bounded function ¢(z,y). The strong maximum principle yields that z = 0 in
R%; ie., v(z,y—7%) = uc(sina’ (y—7*) —cosa’ x) = u(z,y) in R%. This is impossible
because ue <1 — ¢ and supg2 u = 1.

Eventually, that shows that if 0 < oo < 7/2, then ¢ > ¢/ sina.

(2) In this part, we deal with the case @ = 7/2, which has not been treated in
part 1. Indeed, the sliding method used in part 1 no longer works for the limiting
case a = /2.
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Suppose that ¢ < ¢y. With the same notation as in part 1, there exists a real
e > 0, small enough and fixed, such that ¢ < ¢., where (c., u.) is the solution of (4.1).
For some reals n, £ > 0 that will be chosen later, consider the function v(z,y) =
ue(y — (), where p(z) = \/n?z* + 2.

Let us check that this function v is a subsolution of (1.1) if > 0 and x > 0 are
suitably chosen. We have

Av—coyv+ f(v) =1+ ¢ (@))ul — ¢"(v)ul — cul + f(u.)
= @' (@)%l + (ce — ¢ — " (@)ul + f(ue) — fe(ue).

On the one hand, we have f > f.. On the other hand, since w. fulfills (4.1), it is
well known that u. admits the following asymptotic behavior as 1 — d00: u.(z1) =
—e+(0+4¢)e®" if ;1 <0 and ug(xl) = l—c—aet™ —l—o(e)‘xl) ul(z1) = —areN 1 4

( A1) ae x1 — 400, where A = Ve 4(f5) =) . Furthermore, we have
ul = ccul — fe(ue) and u. > 0 in R. Finally, there exists a constant C' > 0 such that
|u/6'| < Cue in R. Remember now that ¢. > ¢. In order to have Av — cdyv + f(v) >0
in R?, it is then sufficient to choose the function ¢ such that |¢?| and |g0”| are small
enough. We have |¢”| < n? and |¢”| < n?/k. Hence, we can choose n > 0 and x > 0
such that

Av — cdyv + f(v) >0 in R%

To sum up, the function v is a subsolution of (1.1) and each of its level sets has
two asymptotes directed by the vectors (%1, arctann).

We can now argue as in part 1: formula (4.3) is still true if 7 is large enough. As
in part 1, we can decrease 7, we can define 7*, and we get a contradiction thanks to
the maximum principle.

This eventually proves that if & = 7/2, then ¢ > ¢y.

(3) Choose now any angle « € (0,7/2]. We still have to prove that ¢ < ¢p/ sin a.
Suppose on the contrary that ¢ > ¢p/ sina. Let us consider some functions f¢ on
[e,1+4¢] such that f= fon[e,1—¢], f€>0on (8,1+¢), f¢(1+¢) =0, (f5)(1+¢)
exists and is negative, f¢ > f and || f— f||ooc — 0 as ¢ — 0. In particular, the function
f¢ is of the ignition temperature type on the interval [¢,1 + ¢]. For each & > 0 small
enough, there exists a unique couple (¢, u®) fulfilling

u —cfuf' + ff(uf) =0 inR,
uf(—o0) = ¢, uf(0) =0, u*(+00) =1+e.

Furthermore, ¢© > ¢ and ¢® — ¢ as € — 0 (see [9]).
Choose o and € > 0 such that 0 < @/ < a < 7/2 and ¢ > ¢/sina’ > ¢/ sina.
From Theorem 1.1 applied to the function f€, there exists a solution v(x,y) of

Av — ¢ /sina’ av—i—fg( )=0 in R?
v(AK) — ab/\—>+ooandk’—>k60( &, a),
()\k)—>1+6 as A — 400 and k' — k € C(é, 7 — o).

Moreover, dyv > 0. The function v is a supersolution of (1.1) in the sense that
Av — cdyv + f(v) = (¢¢/sina’ — ¢)d,v + f(v) — f¢(v) <0 in R?

since ¢ > ¢*/sina/, Oyv > 0, and f < f=.
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We now claim that there exists 7 > 0 such that
v(z,y+7) > u(z,y) in R2.

Otherwise, for each n € N, there exists a point (z™,y") € R? such that v(z™, y" +n) <
u(z™,y™). As in part 1, by dealing successively with the cases where the sequence
(zn,yn) is bounded or unbounded, we would get a contradiction.

Now, let us set

™ =inf {7 €R, v(z,y +7) > u(r,y) in R*}.

As above, 7* is finite and v(z,y + 7*) > u(z,y) in R? with equality somewhere. This
is ruled out by the strong maximum principle.

Finally, it is always true that ¢ < ¢p/ sina. Together with parts 1 and 2, this
inequality completes the proof of Theorem 1.2.

5. Appendix: Proof of Lemma 2.10. In this section, we actually deal with a
more general situation than in Lemma 2.10. Let u be a bounded and positive function
defined in the set

V={(z.y) €R* x>0,y >0,22+12 <6}

for a certain 6 > 0. We assume that the function u belongs to Wi’f (V\{(0,0)}) for
all 1 < p < oo and that it is continuous in V. We also suppose that that function v
satisfies the following equations:

Au—cOyu+ f(u) =0 inV,

(5.1) u(x,0) =0 for0 <z <4,
O;u(0,y) =0 for 0 <y <,

where 7 = (—sina, — cos ). The given function f is Lipschitz continuous. Further-
more, f(0) =0 and f/(0) =lim¢_o, 40 M exists.

Set O = (0,0). Choose any vector p = (cos 3,sin8) with 7/2 —a < 8 < 7. We
are going to determine the asymptotic behavior of u and Vu in the neighborhood of
the corner O. That behavior will imply the existence of a neighborhood V of O and
of areal e; > 0 such that if 0 < e < ) and if 2, z+ep € VNV, then u(z) < u(z+ep).

Before doing that, we briefly mention some papers and results that have been
devoted to similar problems in the literature. In many works (see, e.g., Bernardi and
Maday [10], Grisvard [19], Maz’ja and Plamenevskii [30]), the linear elliptic problem

(5.2) Lu= fin G,
Bu =g on 0G\{K}

has been investigated under the assumption that G is a subdomain of the plane R? and
that the boundary 0G of G is Lipschitz continuous everywhere and smooth except at a
corner K say, K = O. Assume that L is an elliptic operator and B is a smooth linear
function depending on the traces of u or Vu on 0G\{K}. The function u belongs to
some Sobolev spaces with weights but u, or its derivatives, may be singular at the
point K. The general result is the following: in a neighborhood of the point K = O,
the function u can be written as

k

(5.3) u(r,0) = Z cpro® Z (—Inr) 0.1 (6),

k>1 h=0
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where (r,0) is the usual polar coordinate and where the complex numbers «y have
nondecreasing real parts. Thanks to the change of variables r = e* (see Kondrat’ev
[25]), equation (5.2) becomes

Lu=f

in a set containing an infinite strip of the type (—oo,a] x (0,3). The terms r®t
become e*** and the numbers «a;, are given in terms of the eigenvalues of an operator
Ly depending on # and on the principal part of L at the corner K.

In particular, for the Dirichlet problem

Au=f inG={r>0, 0<0<w},
u=0 on dG\{K},

where f € W™P(@G), it is known that, in a neighborhood of K, the function u is equal
to

sin(kmf/w)

. km/w
CECEIN VIl e TR S

+ uRr,

where ugp € W™2P(G) (see Geymonat and Grisvard [16], Grisvard [19], [20], or
Dauge [13] for a three-dimensional situation).

Let us now come back to the elliptic problem (5.1) that is set in the domain
V with the corner O. The boundary conditions on JV are of the Dirichlet and
oblique-Neumann type. But, unlike the problems mentioned above, we have to deal
with a semilinear problem. Then, we cannot a priori hope for an infinite asymptotic
development of the type (5.3) for u. Nevertheless, we only need to know what v and
its derivatives are equivalent to in the neighborhood of O.

In [9], [8], Berestycki and Nirenberg have emphasized the semilinear problem

Lu+ f(z1,v) =0, v >0 inX_ ={(r1,y), 1 <0, y € w},
Oyu=0 on (—o00,0) X dw,

where w is a smooth domain with unit outward normal v. If u — 0 as 1 — —o0 and
if |f(z1,u)] = O(u'*®) as u — 0 for a certain § > 0, then the nonlinear term f(z1,u)
only makes small perturbations with respect to Au. The asymptotic behavior of u as
x1 — —oo is given in [8], [9].

If we come back to (5.1) and if we make the change of variables r = e, we can
see that v fulfills

Au — csin0e'9yu — ccos 0 €' dpu + €* f(u) = 0 in (—o0,Ind) x (0,7/2)
with Dirichlet and oblique-Neumann boundary conditions:

u=0 on {0 =0},
—cosa Oyu+sina Gpu=0  on {0 =n/2}.

To conclude this discussion, the semilinear problem (5.1) with mixed boundary
conditions does not seem to have been treated so far in the literature. Hence, for the
sake of completeness, we give a detailed proof of Lemma 5.1.

LEMMA 5.1. Let v = (2/m) a. There exists a real X > 0 such that

{ u — Ar7 sin(v0) (r7)
Vu — AV (r7 sin(y0)) (r=1h

=0 >
as r=0.
=o0
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Proof of Lemma 2.10. Consider the behavior of u near the corner C; of ¥, and
call (r,0) the polar coordinates with respect to the point C;. From Lemma 5.1, one
has

(5.4) Vu-p—AV(r7sin(y0)) - p=o(r’"') asr — 0.
Remember that p = (cos 3, sin ) with 7/2 — a < § < 7. Thus,
V(7 sin(48)) - p = yr7" sin((y = 1) + B).
For any point z = (r,6) € V, we have
O<a—-7/2408<(y=-1)0+08< B <.
As a consequence, there exists a real > 0 such that
=D V(7 sin(y0)) - p > n > 0.

From (5.4), it follows then that d,u > 0 in a neighborhood Vi of C;. As far as the
behavior of the function u near the corner C; of 3, is concerned, Lemma 2.10 is then
a consequence of the finite increment theorem.

The other corner C3 can be treated similarly. Indeed, after setting the origin in
(5 and making the change of variables y — —y, 4(x,y) = u(x, —y), we find that

(I —-1a)— Ar7sin(y0) =o >
{ —Vi — AV(r7sin(y0)) = o(r’~1) as r=0,
where v = (2/7) (7 — o) and where X is a positive real. The same calculations as
above yield that, for any p = (cos3,sin ) with 7/2 — o < § < =, the function u
is such that d,u > 0 in a neighborhood V3 of C3. Notice that, unlike the situation
around the point (', the function d,u is bounded near C3 since v > 1. 0

Proof of Lemma 5.1. Remember first that V = {0 <r < 6, 0 < 0 < 7/2}. We
choose to work with the (r,0) coordinates. Notice that everything works similarly
with the coordinates (¢,6), where r = et. The following proof, similar to the one in
[8], is divided into six main steps for the sake of clarity.

Step 1. Set v = (2/7) «; notice that v € (0, 1]. Let v be the function

v(r,0) = r7sin(~0) for (r,0) € (0,6] x [0,7/2]
and v(0O) = 0. It is easy to check that

Av=0 inV,
0:v(0,y) =0 f0<y<,

where 7 = (—sin «, — cos ). Moreover, v(z,0) = 0 for all 0 < z < § and v(z,y) > 0
if y > 0.
Step 2. We now want to construct two sub- and supersolutions v and v such that

Av—cdyp+ f(v) >0 inVy,
(5.5) v(z,0) <0 if0 <z < b,
9,v(0,y) <0 if 0 <y < o,
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AT —coyv+ f(U) <0 in Vp,
(5.6) v(x,0) >0 if 0 <z <ép,
9,v(0,y) >0 if 0 <y < do,

in a small enough neighborhood Vj of O of the type Vo = VN B(0, §y), where the real
8o € (0, 6] will be chosen later.
Consider the functions

{ g(0) =1—rcos(30) + Asin(p0),
g(#) = —1+ cos(30) + Asin(/36),

{

where 8 and 3 are two fixed reals, different from 1 and such that vy < Q,B <v+ 1L
The reals A and A will be chosen later. A straightforward computation gives

and

— 7 sin(y6) + rg(9),

= r7sin(vy0) + r7g(6),

SIS

Lv:= Av—ciyu+ f(v)
B2 — eyr7 =1 cos((y — 1)6)
—cﬁrﬁ_l[sinﬁ +sin((8 —1)0) + Acos((8 —1)0)] + f(v).

Since 8 < v+ 1 and [f(t)] < MJt| for all ¢ (with M = [|f|Lip = sup, yeo.1), 2ty

w» it follows that there exists a real 6; € (0,06] that depends only on «, f3,

M, and A such that L(kv) > 0 in V N B(O, é;) for any x > 0. On the other hand,
YO<y<é, 0;u0,y) = @ﬂﬁ_lp sin(a — fr/4) sin(fBr/4) + Asin(a — Bm/2)].

Since (2/7) a < 8 < (2/7) a+1, we can then choose a real A large enough, depending
on a and 3, such that 9,v(0,y) < 0 for all 0 < y < &. Furthermore, we have
v(z,y) = 0if y = 0 and 0 < = < 6. We then conclude that v satisfies (5.5) in
VN B(O,é6).

Similarly, we can prove that there exists a real 62 € (0,6] such that T satisfies
(5.6) in VN B(O, 62). Eventually, by defining 69 = min(81, 62), it follows that v (resp.,
v) satisfies (5.5) (resp., (5.6)) in Vo =V N B(0, éo).

Step 3. Even if it means decreasing 6y > 0, we can assume that v and v are positive
in Vo N {y > 0}. Indeed, this is possible because v < 3,3, because sin(y§) > 0 for
0 < § < /2 and because both functions g(6)/sin(y0) and g(0)/sin(v6) are bounded
in the interval {0 < 6 < 7/2}. On the other hand, we define a function

@(I,y) — 9efosa + sina 61/60(coso¢ z — sina y + sina ) in V.
We observe that the function ¢ is positive in Vg and 9,¢(0,y) = 0 for all 0 < y < &.
Furthermore, we have

Ap —cdyp + || flLipp < —1/65 + 1/60 |c|sina e @ 4 9| f ecosateine,
Even if it means decreasing again 8y > 0, we may also assume that

Ap — cOyp + || fllLipp < 0 inlj.
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Since u is positive in Vj and satisfies (5.1), the maximum principle and the Hopf
lemma yield that u(z,y) > 0 as soon as y > 0 and that dyu(x,0) > 0 for all z > 0.
Similarly, 0,7(«,0) > 0 for all z > 0. Finally, there exist two reals v, i > 0 such that

(5.7) V(z,y) e Vn{a? +y* =63}, pu(z,y) < ulz,y) <vo(z,y).

Let us now show that this last inequality (5.7) is actually true in the whole set
Vo. Remember that u solves (5.1) and that pv satisfies inequality (5.5). Hence, the
function w = u — pw satisfies

Lw = Aw — cdyw + c(z,y)w < 0 in Vp,

where ¢(z,y) is a bounded function in Vj such that ||c/|lo < ||fllLip- Set g = w/e.
One has

\V4 ~
Mg := Ag+ 27@ - Vg — cOyg < —%(Acp —cOyp + c(z,y)p) = —%L(p.

In view of the properties fulfilled by ¢, it follows that
Lo < Ap— cOyp + || fllLipyp <0 in Vp.

If the set Q_ = {(z,y) € Vo, g(x,y) < 0} is not empty, we get that Mg < 0 in Q_.
Since g is continuous in V; (the function ¢ is positive and continuous in the compact
set Vp), let zo be a point in Q_ where g reaches its minimal value. If zg € Vj, then
Vg(zo) = 0 and Ag(zp) > 0. That is impossible because Mg(zy) < 0. Now, since
w>00on dVoN({y = 0}u{z?+y? = §3}), it follows that 2o = (0,yo) With 0 < yo < &o.
Furthermore, since 9,v(0,y0) < 0, we have d,w(zg) = 0-u(z9) — pd-v(z0) > 0 and

0 < 0rw(z0) = g(20)0r¢(20) + ©(20)07g(20)-

The function ¢ is such that 9;¢(z9) = 0 and ¢(z9) > 0. Hence, d,g(z9) > 0. The
latter is ruled out by the Hopf lemma.

Finally, we have Q_ = ), whence w > 0; i.e., pv < u in Vy and even pv < u in Vj
from the strong maximum principle. Similarly, we infer that v < vv in V.

So far, we have shown that

o <u<vt inVop={x>0,y>0 r<éb}.

Step 4. Let us now replace the variables (z,y) with (ex,ey). Set W, = {(z,y) €
R?, (ex,ey) € Vo} and uc(z,y) = e Tu(ex,ey) for (x,y) € W.. From the definitions
of 7 and v, we have

(5.8) p (v +27r89(0) < uela,y) < v (v+ 7 17G(0)) in WL,
where r = /22 + y2. Let II be the positive quadrant
II={z>0,y>0}.

Since v < f3, 3, the left and the right sides of the inequality (5.8) uniformly approach

pv and vv in any compact set K C IT as € — 0.
Furthermore, we have

Au. —ecOyu. = —e* 7 f(u(ex,ey)) in Wy,
us(z,0) =0 for all 0 <z < 6p/e,
Orus(0,y) =0 for all 0 <y < 6p/e.
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Since v < 2 and f(u) is bounded in Vj, the right side of the equation fulfilled by wu.
approaches 0 uniformly in any compact set K C II. The functions u. are defined in
such a compact set K for € small enough and they are also uniformly bounded in
K from (5.8). Moreover, from the standard elliptic estimates up to the boundary,
the functions (u.) are then bounded in W2P?(K) for any compact set K C II\{O}
and for any 1 < p < oco. By a diagonal extraction process, it follows that there
exists a continuous function ug defined in II\{O} such that, up to extraction of some
subsequence, u, — ug in C2°(TI\{O}) for any § € (0,1). The function uo fulfills

loc

Aug=0 inTI,
(5.9) uo(z,0) =0 for all z > 0,
Or;up(0,y) =0 forall y > 0.

Moreover, pv < ug < vv in II\{O}. In particular, the latter implies that the function
ug can be extended by continuity at the point O = (0,0) by setting u(0,0) = 0.
Hence,

o < ug < vu in II.

From (5.8), for any 7 > 0, there exists ¢’ > 0 such that |u.| < n in {(z,y) €
T, a2 +y2 < &} It follows that, up to extraction of some subsequence, the
functions u. also approach uo uniformly in any compact set K C II.

Step 5. We now aim at proving that uy = Av for a certain A such that p < A < w.
Define i and ¥ by i = sup {u, pv < ug in II} and 7 = inf {v, up < vv in II}. We
have pv < ug < v inﬁandﬁgﬂeR.

Let us now suppose that 7z < 7. The strong maximum principle then yields that
7iv < ug < vv in 1. For every R > 0, let us call C(R) = {(x,y) € II, 22 +y?> = R?}
and B(R) = {(z,y) € II, 22 +y? < R?}. Choose any R > 0. On C(R), we have v > 0
and 7I < up/v < 7. There exists then a subset I' C C'(R) such that |T'|/|C(R)| > 1/2
(7| is the length of T') and one of the following assertions occurs:

L E+T g . _ _v-T
< — I .e. — >
(i) 5 < onl, e, u—fw=—=v,
L ug [T o VT
— < I .e. — > .
(ii) o= onI, ie., Tv—ug> 5 v

Suppose that case (i) occurs. Since ug — v > 0 in I, since both ug and v fulfill (5.9),
and since (5.9) is invariant by stretching the variables, a straightforward application
of the Harnack inequality up to the boundary leads to the existence of a real € > 0,
which does not depend on R, such that

ug — v > ev on C(R/2)

(see also Berestycki, Caffarelli, and Nirenberg [3] and Caffarelli [12] for related prob-
lems). Hence, as in Step 3, we get

ug — fiv > ev in B(R/2).

Since (i) or (ii) occurs for each R > 0, we may suppose, say, that there is a
sequence R,, — —+o0 such that (i) occurs for each R,. As a consequence, uy— v > €v
in B(R,/2), whence

Uy — JU > €V in TI.
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That is ruled out by the definition of 7. -
We conclude that @ = 7 =: A, that is to say that ug = Av in II.
Step 6. Conclusion: we have to prove that

(5.10) uw— Ar” sin(y8) = o(r?) as r0,

(5.11) Vu — AV(r? sin(y8)) = o(r7~1) as r>0.

Let K be the compact defined by K = {(z,y) € II,1 < \/22 + 32 < 2} and let  be
any positive number. We know that u. — Av as € — 0, uniformly in K. Hence, there
exists a real g9 € (0,1) such that: V0 < ¢ < e, V(x,y) € K, |uc — Av| < 7. Owing to
the definitions of the function u. and v, we get

V(z,y) € K, Ve <eq, |ulex,ey)— Aler)?sin(v0)| < ne? < nler)?.

In other words, for each (z,y) € II such that 0 < r = /22 +y2 < 2¢¢, we have
lu(z,y) — Ar7sin(y0)| < nr?. Since n > 0 was arbitrary, we have thus shown the
formula (5.10).

Assertion (5.11) can be proved with the same arguments as above. That completes
the proof of Lemma 5.1. ]

REMARK 5.2. Let ¥ be defined as in Step 2 by

7 = r7sin(y0) + TEE(Q),

where §(0) = —1+cos(36) + Asin(30) and where (r, #) are the polar coordinates with
respect to the corner C; = (—a, —acot~y) of ¥,. We choose A such that (5.6) holds
inVo={x>0y>0 0<r < b} for some §y small enough. In particular, for
e € (0,60), we have 9,7 = VU - 7 > 0 at the point (—a, —acot~y + ¢). Hence, under
the notation of Lemma 2.1, one can require that the vector field p. fulfill p. = 7 on
{—a} x (—acoty+e,—acoty+dy) and p.- Vv > 0 on 0%, N B(C1, éy). For instance,
choose a function 7(z,y) defined on 9%, N B(C1,6) such that 0 <n <1,n=1o0n
{—a} x (—acoty+¢e,—acoty+8p),n=0o0nd%,.N{x>—a+e?} (for e > 0 small
enough). Next, take p.(z,y) = n(z,y)7 on 0¥, . N B(C4,8y). Finally, the function ©
fulfills

pe - VU + 00,60 > 0 on 82(175 n B(Cl, 50),
whereas the function wu, fulfills
pe - Ve +00cue =0 on 08, . N B(Cy, )

(remember that 1. =0 on 9%, . N B(Ch, &) for € > 0 and &, > 0 small enough).
Furthermore, since 0yu.(—a + 8y, —acoty) — dyuc.(—a + 8y, —acoty) < +o00 as
¢ — 0and u. <11in X, ., there exists then a constant v > 0 such that, as in Step 3,

V(w,y) S Ea,eﬂ{rzéo]w ug(.fc,y) < Vﬁ(i&y)

for all € > 0 small enough. Next, we choose the same function ¢ as in Step 3. In
particular, in view of the choice of p., we have p. - Vo = 0 and p. - v > 0 on
0%4.e N B(C1,6p) for € > 0 small enough (v, is the outward unit normal to 93, ).

As in Step 3, it follows then that if the function g = % = ”5%“5 reaches a negative
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minimal value at a point zy in X, . N B(C4,8y), then 2o = (z0,yo) lies necessarily on
0%, N B(Ch,60). At the point 2y, one has p. - Vw + 0g .w > 0, whence

(5.12) g(20) pe(20) - Vio(20) + ©(20) pe(20) - Vg(20) + 00,c(20)9(20)0(20) > 0.

The first term of (5.12) is equal to 0 because p. - Vo = 0. The second and third terms
are nonpositive because ¢ > 0, p. - Vg < 0 (from the Hopf lemma), g(z0) < 0, and
00,e > 0. Furthermore, if yo > —a cot y+¢, then p.(z0) = 7 whence p-(20)-Vg(z0) < 0,
and if yo < —acoty + ¢, then oy (29) = 1. Hence, all the three terms of (5.12) are
nonpositive and at least one is negative. This is impossible.

We conclude that

ue(z,y) < vo(z,y) in Xa. N B(C,b)

for all € > 0 small enough. This gives the required estimate (2.5) around the point
C;. The other corners Csy, C3, Cy can be treated similarly.

The proofs of the estimates (2.8) and (2.10) resort to the same arguments. As
far as (2.8) is concerned, the function T can be chosen as in Step 2 such that (5.6) is
true for each ¢, because the reals ¢, are bounded. As far as (2.10) is concerned, the
function @ can be chosen as in Step 2 such that (5.6) is true for each f, because the
norms || fnllLip are bounded.

Acknowledgments. We are grateful to Prof. P. Clavin for suggesting this sub-
ject and to Prof. J.-M. Roquejoffre for useful remarks.
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EXISTENCE AND NONEXISTENCE OF SOLUTIONS OF
NONLINEAR NEUMANN PROBLEMS*

STANISLAV 1. POHOZAEV! AND ALBERTO TESEM

Abstract. Existence theorems for nonnegative solutions to a class of nonlinear Neumann prob-
lems are proved. Nonexistence results are also discussed, depending either on absorption or on first-
order terms. The proofs make use of a direct variational approach.

Key words. Neumann problems, problems of indefinite type, variational methods, fibering
method, nonnegative solutions, existence of solutions

AMS subject classifications. 35J20, 35J25, 35J65

PII. S0036141098334948

1. Introduction. In this paper we study the existence of nonnegative solutions
to the nonlinear Neumann problem

—Apu = (Vip(x),Vu) | Vu P72 +a(z)ud™t + b(z)u*"! in €,
(1.1)
| Vu |P~2 %:0 on 09.
v

Here ) C R is a connected bounded domain with C** boundary; by v we denote
the outer normal at any point x € 9Q2. We also set

Ayu = div (| Vu [P72 V)
for p > 1 and

0% Ou

i=1

The functions a, b are continuous in Q, while (¢ is differentiable) V) is bounded
and uniformly continuous in Q. An essential feature of the problem is that the function
a changes sign (namely, the problem is of indefinite type; see [9]); instead, the function
b is assumed to be nonpositive. Concerning the exponents ¢, s we shall always make
the following hypothesis:

(Hp) 1<qg<p, 1< s<pt,
where
np .
. T if p<mn,
p =
00 otherwise.
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Problem (1.1) is suggested by some mathematical models of the applied sciences
(e.g., see [1], [12]); besides, in several respects it generalizes other problems previously
dealt with in the literature. In particular, if p = 2, ¢ = constant, and b = 0, it reads

—Au=a(z)u?™!  inQQ,
ou
% =0 on Jf).

This was investigated in [2] in the case 1 < ¢ < 2, respectively, and in [3] in the
case 2 < g < 2*. In both cases the following conditions,

(Hy) a4 := max{a,0} #0,

(1.2) /Qadx <0

are necessary and sufficient for the existence of positive solutions.
As already mentioned, we retain (H;) in the present investigation. As for the
latter condition, recasting (1.1) in the equivalent form

—div (p(z) | Vu |P72 Vu) = p(z)a(z)ud™t + p(z)b(z)u*"! in Q,
(1.3) ~, ou

| Ve | o

on 0},

where p := e¢, suggests the more general assumption

(Ha) /padm<0.
Q

In the following we always assume (Hp)—(Hs) and moreover

When b = 0 the following theorem holds, which generalizes previous existence
results in [2], [3].

THEOREM 1.1. Let assumptions (Ho)—(Hs) be satisfied; let b = 0. Then there
exists a nontrivial nonnegative solution u € L () of problem (1.1). Moreover, u €
CHP(Q) for some 3 > 0.

Under the more general assumption (Hs) the relationship between the exponents
p, ¢, and s plays an essential role. If either

(A) q > max{p, s}
(B) q < min{p, s},

the following result applies.

THEOREM 1.2. Let either (A) or (B) hold and assumptions (Hy)—(Hs) be satisfied.
Then there exists a nontrivial nonnegative solution u € L () of problem (1.1).
Moreover, u € CHP(Q) for some 3 > 0.
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The remaining cases, namely,

(®) s < q<p,

(D) p<q<s,
are more cumbersome. Assuming that
(Hy) suppay \ suppb has nonempty interior,

for case (C), the following can be proved.

THEOREM 1.3. Let (C) hold and assumptions (Ho)—(Hy) be satisfied. Then there
exists a nontrivial nonnegative solution u € L () of problem (1.1). Moreover, u €
CHB(Q) for some 3 > 0.

To deal with case (D) we shall use the following assumption:

(Hs) b(x) < —bg <0 for any x € Q.

(Observe that conditions (Hy) and (Hs) exclude each other.) In the following state-
ment, by saying that “ay is large with respect to b,” we mean that condition (Hg)
below (see section 2) is satisfied.

THEOREM 1.4. Let (D) hold and assumptions (Ho)—(Hz) and (Hs) be satisfied.
Assume that ay is large with respect to b. Then there exists a nontrivial nonnegative
solution u € L>(Q) of problem (1.1). Moreover, u € CY8(Q) for some 3 > 0.

According to the above theorem, in case (D) a nontrivial, nonnegative solution
exists if the source term a, (z)u?~! prevails over the absorption term b(z)u*~!. In
the opposite case such a solution does not exist, as the following result shows. By
saying that “b is large with respect to as,” we mean that condition (H7) (see section
4) is satisfied.

THEOREM 1.5. Let (D) hold and assumptions (Ho)—(Hz) and (Hs) be satisfied.
Assume that b is large with respect to ay. Then the only nonnegative solution of
problem (1.1) is trivial.

Observe that the above nonexistence result depends (for fixed functions a, p) on
the magnitude of the absorption coefficient b. A different nonexistence result, which
depends only on the first-order term, can be pointed out. If b = 0 and ¢ > 2, condition
(Hz) is necessary for the existence of a nontrivial, nonnegative solution to (1.1) (see
Proposition 4.1). Suppose that condition (1.2) is satisfied, while (Hs) is not. In this
case nontrivial, nonnegative solutions of (1.1) (with b = 0, ¢ > 2) exist if ¢) = constant
by Theorem 1.1, yet they do not exist for general ¥. Similar nonexistence phenomena
due to the effect of first-order terms are known for Dirichlet boundary value problems
and for free boundary problems (see [4], [5]).

The proofs of the above results make use of direct variational arguments intro-
duced in [13], [14], [15] (see also [8]); an outline is given in section 2 for convenience
of the reader.

2. Mathematical framework and results. Let X be a real Banach space
with norm || - ||; let f and H be real-valued functionals defined in X. Let f, H be
continuously differentiable in X \ {0}; suppose that H(0) = 0 and

(2.1) (H'(v),v) # 0
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for any v such that
(2.2) H(v)=1.

Here H' denotes the derivative of H and (-,-) denotes the pairing between X and its
dual space.
We associate with f a functional F' setting

(2.3) F(r,v) = f(rv)

for any r € R and v € X.
PROPOSITION 2.1. Let (r,v) be a conditionally critical point of F under condition
(2.2) such that r # 0. Then u :=1v is a nonzero critical point of the functional f.
Proof. According to the rule of Lagrange multipliers, there exist A, u € R such
that A2 + 2 > 0 and

(2.4) A, (r,v) = pH' (v),

(2.5) AF,(r,v) = 0.

Here F.., F, denote the partial derivatives of F'. By the definition (2.3) of F' we have

(2.6) rE.(r,v) = (Fy(r,v),v)
and
(2.7) Fu) = %F (r, %) .

Since (H'(v),v) # 0 by assumption, we obtain A # 0, 4 = 0. Then the conclusion
follows. d

Suppose that in some open subset E C X \ {0} a real-valued, continuously differ-
entiable functional r = r(v) is defined, such that r(v) # 0 and

(2.8) F.(r(v),v) =0
for any v € E such that condition (2.2) is satisfied. Define a functional f(v) setting

(2.9) f) := F(r(v),v).

PROPOSITION 2.2. Let v be a conditionally extremum point of f(v) under condi-
tion (2.2). Then u :=r(v)v is a nonzero critical point of the functional f.

Proof. If 7 = r(v), equality (2.8) and the definition of f ensure that (r,v) is a
conditionally critical point of F under condition (2.2). Then the conclusion follows
by Proposition 2.1. ]

The previous results suggest the following approach to investigating critical points
of the functional f. First we study the equation

(2.10) F.(r,v) =0,

referred to as the bifurcation equation. Suppose that for any v in some open subset
E C X\{0} there exists aroot r = r(v) # 0 of (2.10); let r € C'(E). Then the reduced
functional f given by (2.9) is defined and is of class C* in Ej; following Proposition
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2.2, we maximize (or minimize) f under the constraint H(v) = 1, where H is some
suitable functional.

Let us investigate problem (1.3) using the previous considerations. We shall work
in the Sobolev space X = WP(Q)(1 < p < o) endowed with the norm

1/p
lulx == {/ p|u|pdx+/ p|Vu|pda:} .
Q Q

Since p is bounded away from zero in 2, this norm is equivalent to the usual one. The
functional f associated with (1.3) is

1 1 1
f(u):—7/p|Vu|pda?+f/pa|u|qu+f/pb|u|sda:.
P Jo qJo s Jo

The functional (2.3) and the bifurcation equation (2.10) read in the present case

|

P
F(r,v) = —|;|/Qp|Vv|p dx + TA(U)

r|®

B

T ),

respectively,

(2.11) F.(r,v) = A(v)|r|*%r — B(v)|r|*?r — / o |Vv|P dx |r[P~2r = 0;
Q

here

A(v) :=/pa\v|qu,
Q

B(v) := / plb]| v|® dx,
Q

and use of the assumption (Hz) has been made.
For r # 0 the bifurcation equation (2.11) is equivalent to

or.0) = [ p1vup s

where

(2.12) ¢(r,v) == A(v)|r|?”P — B(v)|r]*P.
Set

(2.13) E:={ve X|A(w) >0}

observe that by assumption (H;) the set E is nonempty.
It is apparent from (2.12) that, if b = 0 in , for any v € E the bifurcation
equation has a unique positive root, namely,

r(v) = {W}l/(qm |
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Then the reduced functional reads
/(a—p)
; 11\ [ [fgp|VolPda]e)’
(2.14) flv) = < - > {fﬂ .
q p [A(v)]P

In the following we always choose the functional H as follows:

H(v) ::/p|Vv\pdx.
Q

Concerning the variational problem

(2.15) max f(v) under the condition / p|VolPde =1,
veE [¢)

the following result will be proved.

PROPOSITION 2.3. Let assumptions (Ho)—(Ha) be satisfied; let b = 0. Then the
maximum in (2.15) (where [ is the functional (2.14)) is achieved at some function
v>0,0#0 in Q.

Theorem 1.1 is an immediate consequence of the above proposition. Similarly,
Theorems 1.2-1.4 follow easily from Propositions 2.4-2.6 below.

If b # 0 and either (A) or (B) holds, the bifurcation equation has a unique positive
root r = r(v) for any v € E (see (2.12)). Moreover, for any v € E the quantity

(f"(r(w)v)v,v) = Fur(r(v),v)

= (¢-p) /Q p[VolP dz |r(0)P~% + (g — 5)B(o) |r(0)[*2

is strictly positive if (A) holds or negative if (B) holds; hence r € C*(E). The reduced

functional
for=(5-3) [omer s+ (3 - 5) B0
(2.16) - (3= D) awror- (3 - 1) B@irwF

is defined for any v € E; the following result will be proved.

PROPOSITION 2.4. Let assumptions (Ho)—(Hs) be satisfied; moreover, let either
(A) or (B) hold. Then the mazimum in (2.15) (where f is the functional (2.16)) is
achieved at some function v >0, v £ 0 in €.

Concerning case (C), it is easily seen from (2.12) that a nontrivial solution r(v) of
the bifurcation equation exists for any v € E such that B(v) = 0, yet need not exist
if B(v) > 0. In the latter case the function ¢(-,v) has a unique positive maximum
point, namely,

_ s B(v)) V(@9
(2.17) r(v) == {i — igv;} .

Moreover,

[A(v)]P—* 1/(g—s)
o) o) = { LT
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where
(p—s)P°
2.18 = .
(2.18) 1T = s (p— g
Define

By { e Bl [AGI > B0P | [ p|Vv|de]q_s} |

Observe that Fy # () by assumption (Hy); in fact, for any v # 0 such that

suppv C (supp a4 \ supp b)’

we have A(v) >0, B(v) = 0.
For any v € Ey the bifurcation equation has one positive root if B(v) = 0 or two,
say,

r—(v) <ri(v) <ry(v),

if B(v) > 0. In both cases we denote by r(v) the maximal positive root. Observe that
the quantity F..(r(v),v) is strictly negative; hence r € C*(Ep); in fact,

Frr(r(v),0) = =(p — @) A(v) [r(v)|*™* if B(v) =0
Frp(r(v),v) = =(p = ) A@) [r(0)"2[lr(0)[77* = |r<(0)|*7°] if B(v) > 0.

Since the reduced functional (2.16) is defined for any v € FEjy, the variational
problem

(2.19) max f(v) under the condition / p|VulPde =1
ve kg Q

can be investigated. The following proposition holds.

PROPOSITION 2.5. Let assumptions (Ho)—(Hy4) be satisfied; let (C) hold. Then
the mazimum in (2.19) is achieved at some function © > 0, v # 0 in ).

Finally, let us discuss case (D) under assumption (Hs); observe that this assump-

tion implies B(v) > 0 whenever A(v) > 0. Instead of the set Ey considered in case
(C), now define

By = { € B [A@)? > [B)"" [ / p|Vv|pdx]s_q} 7
where

,7 (s—p)°7?
(2.20) el oy pap T2

If By # 0, for any v € E; there exist two positive solutions of the bifurcation equation.
In such a case we denote again by r(v) the maximal positive root and consider the
reduced functional (2.16) for v € E;.
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To ensure that the set E; be nonempty, we find it convenient to introduce its
subset

By { € B AQ)7 > (B | /Qmwdx]s_q} ,

where
g P
2= W -
It is easily checked that vo > ~1; thus E5 C E; as asserted. We shall assume that
(Hg) Es5 is nonempty.

It is easily proven that for any v € Fs the functional F'(-,v) has two positive zeros.
Hence it has a (local) minimum point and a maximum point, which are the minimal,
respectively, the maximal positive root of the bifurcation equation. It follows that

f(v) = F(r(v),v) = 17{1>a(§<F(7“, v) >0

for any v € Es.
Concerning the problem

(2.21) max f(v) under the condition / p|VolPdr =1,
vek; Q

the following result will be proved.
PROPOSITION 2.6. Let assumptions (Ho)—(Hz) and (Hs)—(Hs) be satisfied; let (D)
hold. Then the mazimum in (2.21) is achieved at some function v >0, v #Z 0 in Q.
In connection with assumption (Hg) and the statement of Theorem 1.4, observe
that the inequality

[A@)FTF > BT UQ p|Vol? da?] B

is satisfied for some v € E if the positive part a4 is sufficiently large with respect to
b (for instance, it suffices to replace ay by Aas, A > 0 large enough).

3. Proofs of existence. Set

S = {UEX|/va|pdx=1}.
Q

Let us prove the following lemma.
LEMMA 3.1. Let assumptions (Ho)—(Hz) be satisfied. Then the set

EnNnS= {’UEX|A(’U) >0,/p|Vv|pdx:1}
Q

is bounded in X.
Proof. By absurd, let {v,} € EN S be such that

[ otoaldot [ plVo,pds — oc
Q Q
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as n — 0o. For any n € N set

Up = tp + Wy,

where

1
t, = —/ pupdx,
ol Jo
Wy, 1= Uy — L.
Since
/ p|Vw,|P de = / p|Vo|Pde =1
Q Q
and

/pwndacZO7
Q

by embedding results there exists C' > 0 such that
|wp|x < C for any n € N.

This implies that |t,| — oo; moreover, since by assumption (Hg) the space X is
compactly embedded in L4(Q2), we may assume that {w,} converges strongly in the
latter space. Then we have

/pa|vn|de=|tn|q/pa
Q Q

as n — oo by assumption (Hs). This contradicts the definition of E; hence the
conclusion follows. |

Let us prove Proposition 2.4. The proof of Proposition 2.3 is similar, yet simpler
by the homogeneity of the reduced functional (2.14); hence it is omitted.

Proof of Proposition 2.4. Set

q
1—}—% dr — —00

(3.1) M :=sup{f(v) |ve ENS},

where f is the reduced functional (2.16). It is easily seen that M € (—oo,0] if (A)
holds or M € (0,0) if (B) is satisfied. Let {v,} C E NS be a maximizing sequence.
Due to Lemma 3.1, we can assume that {v,} converges weakly in X to some ¥; by
assumption (Hyp), it follows that v, — © both in L(Q) and in L*(Q2). Let us prove
that v € ENS.

(i) Since {v,} € EN S, from the bifurcation equation we obtain

(3.2) A(vp)|r(vy)|*7? > 1 for any n € N.
On the other hand, since v,, — v in L7(€2), there holds
A(v,) — A(D) asn — oo.
By absurd, let A(?) = 0. If (A) holds, let us rewrite (3.2) as follows:
[ (va)] = [A(v,)] /4P,
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then we conclude that |r(v,)| — oco. Since by (2.16)

Fon < (3= 2 e

q p

this implies that f(v,) — —oo, which is impossible. If (B) holds, we can recast (3.2)
in the following form,

(3.3) A(vn) = |r(vn) P71,
thus obtaining that |r(v,)| — 0. Since B(v,) — B(#) < oo, this implies that f(v,) —

0, contradicting the inequality M > 0. Then A(v) > 0, i.e., v € E.
(ii) By the weak convergence of {v,} in X there holds

/ p|VolPdx < 1.
o

Since A(v) > 0, by (Hz) we also have

/ p|VolP dz > 0.
Q

If the first inequality were strict, we could find ¢ > 1 such that

[ oivt)riz =1

Q

hence to € ENS. The root r = r(tv) of the bifurcation equation satisfies the equality
(34) A(to) |r(t0)|7P — B(to) |r(t0)|*7P = 1.

Since

A(tD) = t9 A(0),

B(tv) = t° B(v),
this gives
(3.5) A(D) |tr(to)|T7P — B(0) [tr(tv)|* P =t7P < 1.

On the other hand, it is easily seen that the sequence {r(v,)} is bounded. In fact, in
case (B) this follows from inequality (3.3). Concerning (A), rewrite the bifurcation
equation for v = v,, as

[ (0n)|P{A(vn) = B(on)|r(on)[*} = 1.

Since A(v,) — A(¥) > 0 and {B(v,,)} is converging, for any diverging subsequence of
{r(v,)} the left-hand side of the above equality would diverge, which is impossible.
Since {r(v,)} is bounded, some subsequence is converging; then its limit, say, 7,
satisfies the equality

(3.6) A(D) |F|97P — B(v) |F]°7P = 1.
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Comparing (3.5) and (3.6) immediately gives
tr(to) < 7
if (A) holds, respectively,
tr(to) > 7
if (B) is satisfied. Then an elementary investigation of the function
a0 wo=(;-3)aoe- (-2 Ewe >0

proves that in both cases

(3.8) f(tv) = P(t|r(to)]) > ¢(7) = M,

which is absurd. It follows that v € S; thus the claim is proved. Since the equality

(3.4) holds with t = 1, we get r(v) = 7 (see (3.6)); thus M = f(v). Then the
conclusion follows. O

Let us now consider case (C).

Proof of Proposition 2.5. Set

M :=sup{f(v) |ve EynS}.
Observe that M > 0 by assumption (Hy); in fact, for any v # 0 with

suppv C (supp a4 \ supp b)°
there holds

~ 1 1 q
fo) = (3 - ) A0 b >0,
Since Ex NS C EN S is bounded in X (see Lemma 3.1), any maximizing sequence
{vn,} € EpN S converges to some v € X as in the proof of Proposition 2.4. Let us
prove that v € Fy N S.

To this purpose, observe first that the sequence {r(v,)} is bounded. In fact, for
any diverging subsequence the right-hand side of the equality

(3:9) Awa) [r(va)|77 = B(va) [r(v)* 77 = 1

would be infinitesimal, which is impossible.
(i) Let us show that A(v) > 0. Since {r(v,)} is bounded, some subsequence
(again denoted {r(v,)}) converges to a limit 7. If A(7) =0, we have

M= tim f(v,) = (; - i) B@)|7l* <0,

which is absurd since M > 0.
(ii) Let us prove that the strict inequality in the definition of the set Fy is satisfied
at v = . This follows by (i) if B(7) = 0. In any case there holds

4@ 2@ [ [ oo e
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Suppose that B(%) > 0 and the equality sign holds in the above relation. This means
that the maximum of the function ¢(-,v) equals [, p|[Vo|P dz (see section 2); hence

r(0) = r.(0).

On the other hand, it follows easily from (3.9) that 7 := lim, . |7(v,)| is strictly
positive. Passing to the limit in the same equation as n — oo we find

(3.10) A@) |77 — B@) |77 =1 > / p|VolP dx,
Q
whence
F=1r(0) =r0).

Then we obtain

M = lim_f(vn)
- ((11 - ;) A(®) r* () + (; - i) B(v)r*(v)®

L2y { oz }”“‘” <0
p\g s) p-9AW@)* ’
which is absurd. Hence the claim follows.
(iil) Tt is easily checked that, if

/ p|VolPde <1,
Q

we can find ¢ > 1 such that tv € EygN.S. As in the proof of Proposition 2.4 this gives
inequality (3.5). Moreover, observe that

r4(0) = t%r*(f)) = tr.(tv) < tr(tv);
similarly,
(D) < T.
Thus comparing (3.5) and (3.10) we find
T < tr(tv),

whence the claim follows as in the proof of Proposition 2.4. Since v € Ey NS and
7 = r(0), we have M = f(#). Then the conclusion follows. 0

Let us now prove Proposition 2.6.

Proof of Proposition 2.6. Set

M :=sup{f(v) | v e E1 NS}



NONLINEAR NEUMANN PROBLEMS 131

observe that M > 0 by assumption (Hg), since f > 0 for any v € Ey (see section 2).
Let {v,} € E1NS C ENS be a maximizing sequence, which converges to v € X as in
the proof of Proposition 2.4. The conclusion will follow if we prove that © € F1 N S.

(i) Let us first show that A() > 0. Since {v,} C E1 NS, for any n € N we have

71 [Bon)) TP < [A(va)]*7

s—p
a o0 S— S— S S— S
(3.11) < (L= ) ottty -, e

Taking the limit as n — oo gives

B(v) > > 0.

,Yf/[p(sfq)] ( bo )[S(s—p)]/[p(s—q)]
(IBllscllpll)s=P)/P
On the other hand, from the first inequality in (3.11) we obtain

lalloo

A(D) > 711/(5—17) [B(v)](a—)/ (s=p),

hence the claim follows.
(ii) Tt is easily seen that

A = wlpo | [ pviras]

To exclude the equality in the above relation we can use the same argument as in part
(ii) of the proof of Proposition 2.4, provided that the sequence {r(v,)} is bounded.
This follows easily from the bifurcation equation

(o) P{A(0n)|r(va) "7 = B(va)} = 1,

since B(vy,) — B(¥) > 0 by (i) above. Hence the claim follows.

(iii) To prove that [, p|Vo|Pdx = 1 we can use the same argument as in the proof
of Proposition 2.4; we omit the details. The proof is complete. ]

Proof of Theorem 1.1. Due to Proposition 2.3, there exists a conditionally ex-
tremum point ¥ > 0, © # 0 of the reduced functional f in the set E. According
to Proposition 2.2 u := r(0)v is a nonzero critical point of the functional f, hence
a nontrivial, nonnegative solution of problem (1.1). A standard bootstrap argument
(see [7]) shows that u € L°(); then the asserted regularity of u follows by [10] (see
also [6], [16], [11]). Hence we have the conclusion. o

Theorems 1.2-1.4 follow similarly by Propositions 2.1 and 2.4-2.6; the details are
omitted.

4. Nonexistence results. Let us briefly discuss the nonexistence results men-
tioned in section 1.

Proof of Theorem 1.5. Since the set £ NS is bounded in X (see Lemma 3.1), by
assumptions (Ho) and (Hsz) there exists My > 0 (depending on a, p) such that

(4.1) / plv|’de < My for any v € ENS.
Q

We shall prove the following statement: let

(Hr) las |55 ll{ ™0/ M/ < b8P,
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the constant 1 being defined in (2.20). Then the inequality

5—q
(4.2) AP < 7 [B(o)]? { / ,0|Vv|pdx]
Q
holds for any v € E.
The above statement implies that the only solution of the bifurcation equation is

trivial; thus the conclusion follows.
(1) Let us prove first the above statement for v € E N S. Since

(s—q)/ als
AW) < gl o]~ ( / pvrdx) ,

B(v) > bo/ plv|*dz,
Q

the inequality (4.2) holds if

(s—p)(s—g)/5 [p(s—q)]/s B
lag 257 o] e e ( /Q p|v|5dx) < b,

Due to (4.1), the latter inequality is satisfied if (H;) holds. Then the conclusion will
follow in this case.
(ii) By absurd, let v € E satisfy

(43) AW 2 Bl | [ pvrad]
Recall that by (Hs)
/ p|VvlP dz > 0;
Q

then there exists ¢ > 0 such that tv € EN S. It is easily checked that (4.3) implies
[A(t0)]*™" = 1 [B(t)]*™?,

thus contradicting (i) above. This completes the proof. 0

Let us finally prove the following result.

PROPOSITION 4.1. Let b = 0; let w > 0, u # 0 be a solution of problem (1.1).
Then

/ padr <O0.
supp u

Proof. Following [2] we set for any € > 0

s dt
he(s) ':/0 (t + )@ D/e-D"

Then by (1.1) with b = 0 the function h.(u(z)) satisfies the problem

—div (p(x) | V[he(u)] [ V[he(u)))
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U
u—+ €

= p(z)a(z) ( )q_l + (g —1)p(x)

(u+e)

o Olhe(u 1 a1 _5 Ou
N O AL

qg—1
u | Vu [P
dr = —(q—1) [ p2 gz <.
/Qp“(we) #=-l )/Q”<u+e>q 7t

Letting € — 0 we obtain

/ padr < 0.
supp u

As in [2] it is proved that the above inequality is strict; then the conclusion fol-

lows.

d
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BOUNDS ON THE DISPERSION OF VORTICITY IN 2D
INCOMPRESSIBLE, INVISCID FLOWS WITH A PRIORI
UNBOUNDED VELOCITY*

J. HOUNIET, M. C. LOPES FILHO%, AND H. J. NUSSENZVEIG LOPES*

Abstract. We consider approximate solution sequences of the 2D incompressible Euler equations
obtained by mollifying compactly supported initial vorticities in LP, 1 < p < 2, or bounded measures
in le)l and exactly solving the equations. For these solution sequences we obtain uniform estimates
on the evolution of the mass of vorticity and on the measure of the support of vorticity outside a ball
of radius R. If the initial vorticity is in LP, 1 < p < 2, these uniform estimates imply certain a priori
estimates for weak solutions which are weak limits of these approximations. In the case of nonnegative
vorticities, we obtain results that extend, in a natural way, the cubic-root growth of the diameter of
the support of vorticity proved first by C. Marchioro for bounded initial vorticities [Comm. Math.
Phys., 164 (1994), pp. 507-524] and extended by two of the authors to initial vorticities in L?, p > 2.

Key words. incompressible flow, ideal flow, vorticity, irregular transport
AMS subject classifications. 35Q35, 76C05
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Introduction. The main object of this work is the behavior of weak solutions
of the 2D Euler equations, modeling the flow of incompressible, inviscid ideal fluids
in two space dimensions. We will be concerned with flows of fluids that are assumed
to fully occupy the 2D Euclidean plane, with velocity vanishing at infinity. We write
the initial value problem in the form of the vorticity equation:

wi +u-Vw =0 in R? x (0, 00),
divu =0 in R? x [0, 00),

curl u = w in R? x [0, 00),
w(r,0) = wo(x) on R? x {t =0}.

(0.1)

The velocity can be eliminated from the vorticity equation by means of the Biot—
Savart law:

T — )t
) = (K v 0)@) = 5 [ &2V Ly 1)y,

T om r2 |2 —yl?

The usual strategy to obtain existence of weak solutions to the problem (0.1)
is to consider a suitable approximate problem, for which existence of solutions is
known, and then to obtain enough estimates to pass to the limit in the weak form
of the equations. The standard approximation schemes used in the literature are the
following: smoothing out initial data, the vanishing viscosity limit of the Navier—
Stokes equations, and desingularized vortex methods. In this work we are specifically
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concerned with weak solutions obtained by exactly solving (0.1) with smoothed-out
initial data. If the initial vorticity wp is a function in LP(R?), 1 < p < oo, with
compact support, the existence of a weak solution obtained as the weak limit of
a sequence of approximate solutions (produced by mollifying initial data) was first
proved by DiPerna and Majda in [4]. For nonnegative initial vorticities in the space
of bounded Radon measures with compact support, BM,.(R?), and in H ! (R?) a
corresponding existence result was proved by Delort in [2]. Vecchi and Wu in [13]
extended Delort’s proof to initial vorticities of compact support in L*!(R?) Ongcl (R?),
without sign restrictions. Uniqueness, in these cases, is an outstanding open problem,
as is existence for arbitrary bounded Radon measures of compact support in ngcl (R?).
Following DiPerna and Majda, we will refer to initial vorticities in BM(R?)NH,_ ! (R?)
as vortex sheet initial data, which we will abbreviate with the acronym VSID. For
bounded initial vorticities, then both existence and uniqueness of weak solutions were
obtained by Yudovich in [14].

Little is known regarding the qualitative behavior of weak solutions of (0.1). The
general problem we will focus on is the following: How fast can a fluid particle be
displaced from its initial position and how is this displacement affected by the regu-
larity of the subjacent flow? If the initial vorticity lies in the space LP(R?) (the space
of compactly supported functions in LP), p > 2, it is well known that the correspond-
ing velocity field is bounded a priori. This means that the trajectory of almost all
fluid particles is contained in a space-time cone centered at their initial positions and
with aperture bounded by global conserved quantities of the flow. Since vorticity is
constant along particle trajectories, this implies that the support of vorticity remains
compact and its diameter grows at most linearly in time. For nonnegative bounded
vorticities Marchioro [10] showed that the growth of the displacement from the initial
position is at most of the order of the cubic-root of time, so that the space-time cone
above can be substituted with a space-time cubic parabola. This result captures the
trend that flows with single-signed vorticity have of rotating, rather than spreading
particles. The result was extended by two of the authors in [9] to nonnegative initial
vorticities in LP(R?), p > 2. However, the estimate on the aperture of the cubic
parabola obtained is lost when p — 27T,

If the initial vorticity is in L2(R?), 1 < p < 2, or in BM.(R?) N H;_}(R?), it is not
known whether the flow preserves the compactness of the support of vorticity. This
problem was the initial motivation for the present work. The results we obtain here
address the rate of dispersion of vorticity (or, equivalently, of material domains) in
time. We will prove that the pictures obtained for more regular flows, i.e., linear cones
in space-time for general vorticities and cubic parabolas for nonnegative vorticities,
remain substantially true for even the most irregular cases. More precisely, we will
show that, for any approximate solution sequence, given an initial disk in the plane
and any € > 0, there exists an aperture for a space-time cone (and for a cubic parabola
in the case of nonnegative vorticity), uniform in the sequence, for which the set of
particles in the initial disk whose trajectories leave the cone (respectively, the cubic
parabola) has Lebesgue measure less than e.

The remainder of this paper is organized in three sections: the first on flows with-
out sign restriction on the vorticity, the second on flows with nonnegative vorticity,
and the third containing extensions and conclusions. In the first one, we obtain esti-
mates resembling Chebyshev inequalities for the Lagrangian maps that are applicable
to any linear transport equation with a divergence-free smooth velocity field bounded
in LI(R?). These results can be better understood in the context of the transport



136 J. HOUNIE, M. C. LOPES FILHO, AND H. J. NUSSENZVEIG LOPES

theory by vector fields with Sobolev space regularity by DiPerna and Lions [3]. In the
specific context of the 2D vorticity equation, we also obtain a result of the same nature
in the physically relevant situation where the velocity is only L%OC(RQ). The second
section begins with a simplified proof of an exponential decay estimate on the mass of
vorticity near infinity due to Marchioro (this is the heart of the proof of Theorem 2.1
in [10]). We apply Marchioro’s result and the Chebyshev inequalities obtained in the
first section to get results on the smallness of the mass and of the Lebesgue measure of
the support of vorticity outside a suitable cubic parabola. All our results are proved
for a smooth approximate solution sequence generated by regularizing initial data,
with estimates independent of the regularization parameter.

Some remarks regarding notation are in order. We denote by B(p; R) the open
ball centered at p with radius R in the plane. The Lebesgue measure of the set E is
denoted by |E| and the complement of E is denoted by E°€. If z = (21, 22) is a point
in the plane, then z* = (—2z5,21). We denote the Lebesgue conjugate exponent of p
by p’ = p/(p—1). Finally, we will use supp w to denote the support of the function w.

1. Chebyshev inequalities. We begin with a result which applies to a gen-
eral flow by a divergence-free, time-dependent vector field u. Consider a bounded,
divergence-free, smooth vector field u : R x [0,T] — R™.

Let X = X (o, t) denote an orbit associated with the flow by w:

dx
o wu(X, 1), 0<t<T
o uw(X,t), 0<t<T,

X(a,0) =a € R™.

We use X(D,t) = {X(a,t) | @ € D} to denote the flow of a set D C R™ under
the vector field u. We often refer to the family of diffeomorphisms a — X(a,t) as
Lagrangian maps.
The first result of this section will be referred to as the filtering theorem.
THEOREM 1.1. Let 0 < Ry < Ry and define the annulus A = {x € R" | Ry <
|z] < Ra}, B(R1, Re,t) = {a € B(0; R1) | | X(a,t)] > R} and let ¢ > 1. Then

t sup ||u(-,t)||Laca)
0<t<T

Ry — Ry

|X(R1, Ra,t)| <

Proof. Fix t > 0. In this proof we will abbreviate ¥(Ry, Ro,t) by 3. Let us
introduce the material cylinder C defined by

c= |J x=9).
0<s<t

The proof consists of integrating and estimating the radial component of velocity
on the set (A x [0,¢]) NC. Let xa = xa(z) denote the characteristic function of the
annulus A. Then, by incompressibility we have

ixS: t QSM(XS
/CXA(x)u(m,s)-|m|dd /O/EXA(X(,)) (8N dods.

Claim. For any a € 3, we have

)d\X(Oa s)|
d

S

(1.1) /0 XA(X(Oé, S) ds = RQ — Rl.
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To see that, consider I' = {0 < s < t| X(«,s) € A}. Since I is open, it can be
written as a countable union of disjoint open intervals:

I'= D(ai7bi)
i=1

Therefore,

¢ dX(a,s)| , Syl d| X (a, s)| <
/0 XA(X(a,s))ddS—;/ai — d

S S

Z [ X (a, bi)| = [X(a; a5)]).-

By the continuity of the trajectories X («,-), each of these numbers | X («,b;)| and
| X (e, a;)| is either Ry or Ry. The curve s — X(a,s) has finite total length, and
hence the summation above has a finite number of nonzero terms, which correspond
precisely to the time intervals during which the curve completely traverses the annulus.
Since | X (,0)| = |a] < Ry and |X (o, t)| > Ra,

> (X (a,bi)| — X (a, a3)]) = Re — Ry,
=1
and the claim is proved. ]

Hence, in view of (1.1),

(1.2) /CXA(x)u(x,s) - %dxds — (Ry— R[S,

On the other hand, we also have

t
/XA(x)u(:c,s)-idxdsg/ / Ixa(x)u(z, s)|dzds
c 2] 0 JX(%,s)

/ Ixa()ul-, 8)|| pacx(s,en 2|01 9ds

<t sup [u(-8)||gaca)|S| 971
0<s<t

Putting together the identity (1.2) and the inequality above we obtain the estimate
we wished. ]

This result can be understood in the context of the linear transport theory devel-
oped by DiPerna and Lions in [3]. What we achieve is control over the local transport
in terms of weak local control over the transporting vector fields that can be applied
in situations where the flow is very singular. A theorem of this nature can also be
proved for vector fields with bounded divergence, which is the context of [3]. However,
in this work we are interested in the incompressible situation.
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In [3], DiPerna and Lions observed that if the vector field v € LZ(R™)N Wlicl (R™)
has bounded divergence, then the Lagrangian maps are L (R™). Let X(-,¢) be the
unique renormalized flow associated with u, with X(-,¢) € L{ (R™). In order to
compare the estimate in Theorem 1.1 with results obtained by DiPerna and Lions,
first recall the classical Chebyshev inequality, which states that if 2 C R™ and if f in

L1(Q), then for any A > 0,

£
o e Q:1f@)] > N} < —2.
Note that we have
[{a € B(0; R1) | | X (e, t)| > R} < {a € B(0; Ba) | [ X (v, ) —a > Ro — Ry}
”X(a’t) _a”%q(B

(0;R1))
= (1.1
— (R2 _Rl)q ( )7

where the last inequality follows from the Chebyshev inequality applied to X (a,t) —
a € L1(B(0,Ry)),

t
[ fo u(X(a, s), S)dSHqu(B(o;Rl)) 11 SUPp<s<t [Ju(-, S)H%q(Rn)
(Ra — Ry)? - (Ra — Ry)1 ’

(1.1) =

where the final inequality was deduced from the generalized Minkowski inequality;
see [12]. The estimate in Theorem 1.1 is a generalization of this conclusion mainly
because our estimate is local, in the sense that it depends only on the L?-norm of u
in the annulus A and not on a global L? bound.

In the next result we single out a special case of the filtering theorem, which is
more in the nature of a Chebyshev inequality for the Lagrangian maps, and which
will be useful in the applications to 2D incompressible flow. Once again, we assume
that the flow w is smooth.

COROLLARY 1.2. Let Sy C B(0; Ry) and t > 0. Then, for every R > Ry, we
have

t sup lu(-, 8)||Lan)
0<s<t

R — Ry

|X(So,t) N B(0; R)°| <

Proof. Since
1X(S0.8) 0 B(0; R)*| = [{X (a1) | @ € Sp and [ X(a,8)] > R},
we have, by incompressibility, that this is equal to
{a € So [ [X(a, )| > R} < [X(Ro, R, 1)],

and the result follows from Theorem 1.1. 0

This estimate applies to incompressible flows of ideal fluids in a number of in-
stances. First, the case ¢ = 2 applies to n-dimensional incompressible flows as long
as the flow exists and the initial data has globally bounded kinetic energy. In the
remainder of this article we will develop applications to 2D Euler flows.
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For any 1 < p < oo, the LP-norm of vorticity is a conserved quantity as long as
the flow is smooth. We first assume that wy € L?, and we are interested in the cases
1 < p < 2. Our concern is the propagation of the support of vorticity, which is a
material domain. In order to apply Corollary 1.2, we need to know the appropriate a
priori estimate for velocity. This is given in the next result, which is an analogue of
the Sobolev embedding W «— LP" | with p* = 2p/(2 — p).

PROPOSITION 1.3. Ifw € LP(R?), for some 1 < p < 2, thenu = Kxw € LP" (R?),
where p* is the critical Sobolev exponent introduced above. Moreover, we have the
estimate

C
\/m HwHLp’
for some C' = C(p), which blows up as p — 1 and remains bounded as p — 2.

Proof. Let I be the first-order Riesz potential, so that, for f in the Schwarz space
S(R™)

Jull o <

e 1)
We consider also the Riesz transforms R; in R2, j = 1,2 so that, for a function
fe SR
—— e
i =57,

where i = v/—1 and & = (£1,&).

The Riesz transforms are bounded in L9(R?), for any 1 < ¢ < oo with the
operator norm continuous with respect to ¢, blowing up as ¢ — 1; see [12]. By the
Hardy-Littlewood—Sobolev theorem, the Riesz potential maps LP(R?) continuously
into LP" (R?).

We observe that the Biot—Savart law can be rewritten (up to a constant factor)
as

u = IlRJ‘w,

where R+ = (=Ry, Ry).

To see this, we first note that I; R maps L? continuously into L?” . For a function
in f € S(R?) we have that I} R+ f = Ky * f, where K; € S'(R?) is such that its Fourier
transform is K, = it/ (2m|€|?), for £ # 0.

Let w be a vorticity in the Schwarz space S(R?), and consider both u; = Kj * w
and up = K+*w. We will show they are the same. Observe that u; and uy are tempered
distributions. The vector field us is the unique solution to the elliptic system:

div u = 0,
curl u = w,
|u| — 0 as |z| — oo.

We can pass the Fourier transform on the system above, and invert the resulting
linear system for £ # 0, to find that the Fourier transforms of u; and uz coincide.
In particular, by varying w, one may conclude that K = K, for £ # 0, which then
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implies, by Theorem 3.2.3 of [5] (since K and K are homogeneous of degree —1 > —2),
that K71 = K and hence that u; = us.

The proposition is proved, except for the asymptotic behavior, as p — 2 of the
operator norm of I;.

To prove the asymptotic estimate, we begin by following the proof of Proposition
3.1.2 in [1], which gives a pointwise estimate of I f for f € LP(R?) in terms of the
maximal function M|f|. Tracking the constants, one arrives at the following estimate:

[ fl(z) <C

e (p— NV .
24 @0 (B0 I (110

Using the Hardy-Littlewood maximal theorem, this implies that
I3 f | Lo w2y < Apllfllze®2),

with A, = C’[27r+(277)(1”1)/1’(%)(?*1)/1’]. Since 1 < p < 2, A, can be bounded from
above by C'/\/2 — p. 0

Estimates for the propagation of support of vorticity can now be proved as a
further corollary of Theorem 1.1 and Proposition 1.3.

COROLLARY 1.4. Assume that wg is a smooth function such that supp (wg) C
B(0; Ry). If 1 < p < 2, then there exists Cp, > 0 such that, for any R > Ry,

Cpt|lwollz» \"
R — Ry '
In addition, there exist constants C > 0 and n > 0 such that if t/(R — Rg) <, then

(R - Ro)2> .

#2[|wol|Z

|wmwume@Rfs(

|wwwmmewRﬂsme%wm(<f

Proof. The first part is a trivial consequence of Corollary 1.2 and Proposition 1.3
together with the fact that the support of vorticity is a material domain: supp w(-,t) =
X (supp wp, t).

We now consider the second part. We use the fact that a compactly supported
function in L? is also in LP for any p < 2. More precisely, we have

lwoll o < [supp wol /7" [|wol| -

Hence, from Proposition 1.3, we know that

K

|[supp w(-,t) N B(0; R)¢| < |supp wo| < R R

for any 1 < p < 2. We optimize the estimate above in p. Since we are interested only
in the behavior for p near 2, we restrict ourselves to searching for minima in the range
7/4 < p < 2. We find that if

t 1 —7/16
< e =,
R—Ro 20”&)0”[; "

then there exists another constant C' > 0 such that

~ _ 2
lsupp w(-,t) N B(0; R)°| < |supp wol exp (_C(I;’»Rg)>
t ||LU0||L2
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as we wanted. O

The critical estimate in terms of the L?-norm obtained above can be understood
as a Trudinger—Moser inequality for the Lagrangian maps. The proof we presented is
a variation on the standard proofs in this context.

If the initial vorticity has compact support and it belongs to L!'(R?) or it is a
bounded Radon measure in ngcl (R?), that is, VSID, then the associated velocity
belongs to L (R?) for each fixed time. It is well known that velocity belongs to
L?(R?) only if the vorticity has vanishing integral over all of R2. Consequently, for
initial vorticities of compact support in L!'(R?) or VSID, with integral zero, we also
have an estimate, valid for smooth approximate solution sequences, of the form

) . c t”uO”L2 2
|[supp w(-,t) N B(0; R)¢| < (R—Ro> .

However, flows with locally bounded kinetic energy are of physical interest. Fur-
thermore, the only rigorous existence result for weak solutions with VSID requires
that the initial vorticities have a distinguished sign. We can still prove an estimate
for the Lebesgue measure of the support of vorticity lying outside a ball of radius R
in this setting.

THEOREM 1.5. Let wgy be a smooth function and let T > 0. Assume the support of
wo is contained in the ball B(0; Ry). Then there exists a constant C = C(T, Ry) > 0
such that for all R > Ry and 0 <t < T we have

2
supp (1) 1 B0 R < € (=)

Proof. Fix R > Ry and 0 <t <T. Recall
Y =3(Ro, R,t) ={a € B(0; Ro) | | X(a,t)| > R}.
Observe that
|supp w(-,¢) N B(0; R)°| < [X].

Hence, it is enough to estimate |X|. We have

1
22 7 [ 1X(a0Pda
R s

2
<2 (/ X (1) —a|2da+/ |a|2da)
R > >

2
R?

(Ty + Io).

Note that X(a,t) — a = fot u(X(a, 8),s)ds. We will need to make use of the
DiPerna-Majda decomposition of an L2  velocity (see [4]). To do this, choose a
circularly symmetric, smooth, and compactly supported function @ = @(|z|) such
that [, @(|z|)de = [, wo(x)dz. Let 4 = K*w(]-]). The stationary velocity field @ is
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smooth and decays as 1/|x|, as || — oo. Let w(z, s) = w(z,s) —a@(|z|) and & = K *@.
It was shown in [4] that

ll|22 2y < K(T) = [[a(-, 0) |22 geye”

Let a € 3. Using the decomposition u = @ + % we have

xat) —af < [ a0xaslas+ [ |a<X<a,s>,s>|ds)2

2
<Cit+C't/ (X (a, 8), 5)|*ds.

We can now estimate Z;:
Ct2 t 3 )
L < — |8+ Ct |u(X (a, 8), 8)|*dads
R 0o Jx

2

Ct
§ﬁ+0t2 (7).

In order to estimate Zs note that if o € 3, then

R—R
X(at) — a| > R— Ry > 1AE L),
Ry
Therefore,
R
la| < R_ORO|X(a,t) —al.

We hence obtain
RO 2 RO Ctz 2
Iy < I, < + Ct .
2_(R—R0> 1_(R—R0 ‘R? K(T)
Collecting these estimates, we finally get

o< 2 ((;22+Ct2 (T )) <1+<Ri%0R0>2>

< Ct?
~ (R— Rp)?’

since, at the same time, R > Ry and R > R — Ry. a0

There is one essential difference between this result and that of Corollary 1.4,
which is the exponential growth of the constant C' in T, while the constant in Corollary
1.4 did not depend on T'.

For flows with no restrictions on the sign of vorticity, there is a well-known trend
for paired eddies with vorticities of opposite sign to move off to infinity with constant
speed. Since more than one such pair of eddies may be present in a given flow,
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with different average speeds, one expects that in some situations the diameter of the
support of vorticity may grow linearly in time. We offer an explicit example from
vortex dynamics to illustrate this behavior.

We consider the point-vortex evolution of four vortices, with initial configura-
tion occupying the four vertices of the rectangle [—ag, ag] x [—bo, bp], with vorticity
strength +w at (ag,bg) and (—ag, —bg) and with vorticity strength —w at (ag, —bg)
and (—ag, bg). This configuration is called a vortex quadrupole. The evolution pre-
serves the quadrupole structure and is determined by a 2 x 2 system of ordinary
differential equations for (a(t),b(t)), which is the position of the point vortex in the
first quadrant. (In fact, by the reflexion method, the evolution of a vortex quadrupole
is precisely the evolution of a single vortex in the first quadrant, regarded as a domain
with boundary.) This 2 x 2 system is explicitly integrable, and the solution is given
by the formulas

a(t) = \/; (q(t)2 +4k2 +q(t)V/q(t)* + 4k2)7

b(t) = L(t),
a(t)? — k2
where
t b2_ 2
co=/a+ b, k=aobo/co, q(t)= i
4k Co

From these formulas it can be seen that the diameter of the support of vorticity grows
linearly in time.

Since this article was first distributed in preprint form, a continuous version of
this example was obtained by Iftimie, Sideris, and Gamblin in [6].

2. Flows with vorticity of distinguished sign. In this section we will con-
centrate on 2D flows with nonnegative vorticity. Our objective is to derive results for
flows with a priori unbounded velocity that capture the O(t'/3) growth on the diam-
eter of the support of vorticity proved by Marchioro in [10] for bounded vorticities.

Our results rely heavily on an exponential decay estimate on the mass of vorticity
far from the center of motion. Although originally proved for flows with bounded
vorticities in [10], this estimate actually applies, with negligible changes in the original
proof, to very singular vorticities such as weak solutions of (0.1) with VSID, obtained
as limits of approximate solution sequences generated by regularizing initial data.
This exponential decay estimate was derived by Marchioro in the course of proving
Theorem 2.1 in [10] and has never been stated as an independent result. We will
do so here and we will offer a simplified proof, in part for the sake of completeness,
in which we avoid the use of dyadic decompositions. We note that an even simpler
and more elegant proof of Marchioro’s exponential decay estimate has been derived
independently by Iftimie and Sideris [7].

We begin with an elementary technical lemma and then proceed to Marchioro’s
result.

LEMMA 2.1. Let ¢ = ¢(r) > 0 be a function such that

/00 o(r)ridr = L < oo.
0
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Let 0 < A< 1 and a> 0. Then

Aa r L
/0 ala —r) $lr)rdr < a?(1— A2’

Proof. Set F(r) = f:\a ¢(s)sds. Then

/OM m‘b(r)rdr - /OM ﬁF’(T)dr - /0/\(1 (a _IT)QF(T)dT

1 Aa

1 Aa Aa
< < - -
S 0= ), F(r)dr < PEITRYE /0 : @(s)sdsdr

1 Aa
= B(s)s*ds <
0

Ca?(1—)\)2 a?(1 — \)?

as we wanted. O

THEOREM 2.2 (see Marchioro [10]). Let wy be a smooth nonnegative function
with support contained in B(0; Ry). Let w = w(x,t) be the unique smooth solution of
the vorticity equation (0.1) with initial vorticity wg. For R > 0 define

(2.1) mt(R)/|>Rw(z,t)dx.

Then there exists a constant C > 0, depending only on fR? wo(z)dxz, on the moment of
inertia [o, |x|*wo(x)de and on Ry, such that for any n € N and any R > 0 satisfying
nRy < R < (n+ 1)Ro, we have

Ct "
s 80 < ()
Proof. Let W = W (r) be a nondecreasing smooth function such that W (r) = 0, if
r < Roand W(r)=1ifr > 2Ry. Let R > Ry. Set ¢ = ¢(y) = W(|y| — (R — Ro)) for
y € R2. Clearly, if |y| > Ro+Ror |y| < R, ¢ is constant, and hence its first derivatives
vanish. We will need the fact that the second derivatives of ¢ are uniformly bounded,
independently of R > Ry. Indeed,

& Yiy; bij Yl
=W"(lyl = (R— Ro))=2 +W'(|ly| - (R - R, (”— ’]>.

Therefore, this second derivative vanishes outside R < |y| < R+ Ry and is bounded
by C(1+1/R) < C(1+1/Ry).
Following Marchioro, we introduce the smoothed-out version of my(R):

(R = [ ooty
Then

(R = [ ety iy = [ Velwuly. oty Oy
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N % /R /R (Vely) = V(2) K(y — 2)w(y, t)w(z, t)dydz.

We divide R? into three regions: 07 = B(0, R/2), Oy = {R/2 < |z| < R}, and
O3 = {|z| > R}, and divide R? x R? into the nine disjoint regions O;; = O; x O;. We
first observe that

| (Fil) = Veola)) Ky = 2ty = )z = 0

if both ¢ and j are at most 2.
We begin by estimating the integral on Oq3:

1

9 /013 (Vo(y) = Vo(2)) K(y — 2)w(y, t)w(z, t)dydz

_ _1/ W'(lz| — (R - Ro))iK(y — 2)w(y, t)w(z, t)dydz
vi<r/2 Jjz12R g

<C| sup / iK(y — 2)w(y, t)dy / w(z,t)dz.
21>k |Jly1<ry2 |2] 2I>R

We will now make use of Lemma 2.1. Let ¢(r,t) = fo%w(r(cos 0,sin0),t)do.
Then,

/OOo o(r, t)ridr = /]Rz |z|w(z, t)dz < %/]R?(l + |z} w(z, t)dx

= C/R2(1 + |z|*)wo(z)dx = L.

Note that, for |z| > R, we have

(2.2) |/y|<R/2 o — 2)w(y, t)dy

z)l

t)d
|/y<R/2 || 27r|y_ z|2 w(y,t)dy

|y|
< T w(y, t)dy
/|y<z/2 12(12] = lyl)

=2y AL
(2.3) = / ———o(r, t)rdr < —
o ezl =) |22
using Lemma 2.1 with a = |z| and A = 1/2.
We conclude the estimate on O;3 obtaining

1

3 () = Vel Kly — oty (e )y < D

R2

2
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Similarly, on Os;

1 ™y (R)

2 /031 (Vo(y) — Vo(2)) K(y — 2)w(y, t)w(z, t)dydz < C e

Next observe that since the moment of inertia is conserved, my(r) < C/r%. We
now estimate the integral on O3 U O33. We have

1

5 ‘/023UO33 (v@(y) B vw(z» K(y o Z)(.U(y, t)w(z, t)dydz

<C| su v —Vo(z)K(y—=z w(y,t)d w(z,t)dz
< <y726%2< oy) = V(DK (y >|> /|yzR/2 oy [ et

mt(R)
R2 7

<C

similarly for Ogzs U O33. Finally, observe that

1

92 /Oss (V@(y) - V(,D(Z)) K(y — Z)W<yat)w(z,t)dydz

m(R)
R?

Q

< C(mi(R))* <

since the second derivatives of ¢ are bounded.
We have therefore shown that

d .

™My (R)
Rz

that is,

C t
my(R) < ﬁ/o ms(R)ds,

since mo(R) = 0. Now we repeat the backwards induction argument of Marchioro.
Note that

mi(R) < my(R) < my(R — Ro).

We now fix n € N and R such that nRy < R < (n+1)Ry. By iterating backwards
in time and in R we get

B CTL t S1 Sn—1
my(R) < Hnil(R i)’ /0 /0 /0 ms, (R— (n—1)Ro)dsy, .. .dsads;
— 1Ly

=0

< conn < C«ntne?m _ g n < Ct n
()3~ mdn T \nd) T\ (R-Rp)3)

Since m;(R) > my(R + Ryp), the conclusion follows. a
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The result above offers no control on the mass of vorticity contained in the annulus
{Ro < || < 2Rp}. The proof could be modified, by suitably changing the definition
of W, so that this absence of control would occur only on the annulus {Ry < |z| <
Ry + ¢}, with e arbitrary. However, the constant C' would blow up as ¢ — 0. To
obtain uniform control over the mass of vorticity outside a ball of radius Ry + €, we
need to use the Chebyshev-type inequalities proved in the first section.

The following results are extensions of the statement of Theorem 2.1 in [10] to
much more singular flows. We will continue using the notation m;(R) as in (2.1).

PROPOSITION 2.3. Let wy be a smooth nonnegative function, with support con-
tained in B(0; Ro). Let 1 < p <2 and ||wol|zr®2y < K. Then, for every 6 > 0, there
exists b = b(K,6) > 0 such that for anyt >0

mqy((Ry + bt)1/3) < 6.
Proof. Fix 0 < 6 < 1. We start with the trivial observation that, for any R > Ry,
my(R) < [|wol| v |supp w(-,t) 0 B(0; R)°|M?" .

From this and from Corollary 1.4 it follows that there exists by = b1(K,6) > 0 such
that mi(Roy + b1t) < é for all ¢ > 0.

From Theorem 2.2, there exists by = by (K, §) > 0 such that m; (2R + (bat)/3) <
0, again for every t > 0.

It is easy to see that one can choose b = b(K, §) such that

min {Ro +bit, 2Ry + (th)l/?)} < (R +bt)"/3,

and this concludes the proof. 0

A similar result is still true in L'; however, the constant b obtained does not
depend uniformly on the L'-norm of vorticity.

PROPOSITION 2.4. Let {w§} be a uniformly integrable family of nonnegative
smooth functions, with support contained in B(0; Ry). Then, for every § > 0, there
exists b = b(6) such that for any e

/ w(z, t)dx < 6.
||>(R34bt)/3

Proof. Fix 6 > 0. By the definition of uniform integrability, there exists n > 0
such that for any £ C R?, with |E| < n and for any e,

/ wi(a)da < 6.
E

Recall, from the proof of Theorem 1.5, that

t2

(B0, B 1)| = [{a € BO; Ro) | IX*(a,8)] > R} < C gy

where X¢ is the trajectory associated with the velocity field induced by w®. Note
from the proof of Theorem 1.5 that C does not depend on €.
It is then possible to choose by such that |X(Ro, Ro + b1t,t)| < n. Next note that

/ w(z, t)de = / wi(a)da < 6.
|z|>Ro+b1t S(Ro,Ro+bit,t)
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The remainder of the argument follows precisely as in the proof of Proposition
2.3. d

Let wy € L!(R?) be nonnegative. Consider any weak solution w, obtained by
mollifying the initial data wg, in such a way as to keep the support of the regularized
vorticities inside B(0; Rp). Such a weak solution was first shown to exist by Delort
in [2]. Then Proposition 2.4 implies that, for any § > 0, there exists b such that
ms((RE 4 bt)'/3) < 6. Of course, Proposition 2.3 implies the same estimate for weak
solutions obtained by regularizing initial vorticities in L2(R?). The subtle difference
is that, for 1 < p < 2, b depends on wy through its LP-norm. The dependence of b on
wp in the L' case is more delicate. (It depends on the modulus of continuity of wp,
regarded as a measure.)

For wg a nonnegative, compactly supported bounded measure in HllOC(R?)7 we
cannot prove a result of this nature for the approximate solution sequences obtained
by mollifying wg. Theorem 2.2 remains valid in this situation, enabling the choice of bs.
However, we have no tools to choose by, i.e., to estimate the mass of vorticity outside
B(0; R), with R close to Ry. Proposition 2.4 cannot be used since, by the Dunford—
Pettis theorem, regularizing wy does not produce a uniformly integrable sequence.
The best result we can obtain along these lines retains the asymptotic behavior as
t — oo. It is a trivial consequence of Theorem 2.2 that, for every 6 > 0, there exists
b > 0 such that

me(2Ro + (bt)'/3) < 6.

In a sense, the results above, controlling the dispersion of the mass of vorticity,
are unsatisfactory. We set out to study how much the fluid particles can get displaced
by irregular fluid flow, and the control on the dispersion of the mass of vorticity, at
first glance, does not give information in that respect. The next two results address
this issue more precisely, demonstrating that the control on the dispersion of the
mass of vorticity achieved so far, plus the techniques and results of the first section,
do indeed control the dispersion of material domains in general. We cast the results
in terms of the measure of the set of vorticity-bearing particles flung far from their
initial positions by the flow, a very particular material domain, but this restriction
is not essential. We prove two results: one showing precisely how the control on the
dispersion of the mass of vorticity implies control on particle trajectories and the
second one, giving a less precise, but more elegant description, in which we bring out
explicitly the cubic parabola behavior of the dispersion discovered by Marchioro.

THEOREM 2.5. Let wy be a nonnegative smooth function, with support contained
in B(0; Ro). Suppose that ||wol|1(r2) < K. Then there exist C1 = C1(K, Ro) > 0 and
Cy = Co(K, Ry) > 0 such that if R > 2Ry and 0 < t < CoR3, then

C1tR3

lsupp w(-, ) N B(0; R)| < Col — 1

my(R/4).

Proof. Fix R > 2Ry and t > 0. Let £(R/2,R,t) = {a € B(0; R/2) | | X (o, t)] >
R}, which we abbreviate £ . Then, |supp w(-,t) N B(0; R)¢| < |ZRg].

We intend to estimate the velocity in the annulus A = {R/2 < |z| < R}. We

decompose the velocity u = K *w(-, s), for 0 < s < t, into a near-field and a far-field
velocity in the following way:

uN(x,s):fly‘>R/4K(x—y)w(y,s)dy; wf =u—ul.
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Consider the cylinder C, defined by C = Jy<,<; X (Zr, s). Next, observe that

/XAR(x)uN(x, DE idacds
c 2]

= /CXAR(:C)U(I,S) L drds — /CXAR(z)uF(x,S) L drds

] ||

> (R— R/2)|Eg| —t|Xg| sup
(z,s)eC

R R Ct
§|ER| - t|ER| = (2 ) |XR],

o (25)- lgmm\

where the latter inequality follows from the same reasoning as in (2.2)—(2.3), with
C = C(K,Rp), and the former inequality is a consequence of (1.1). On the other
hand, using Hoélder’s inequality we have

/ K (r5) -
C

Deduds <t sup [V (s $)z1an)
\ 0<s<t

~ 1
< Ct sup / w(y,s)/ ——dxdy
0<s<tJ|y|>R/4 Agr |z -yl

< CtRmy(R/4),

since, due to the monotonicity of 1/r, the integral of |z|=! on any set of measure
37w R%/4 is maximized by taking the integrating set to be the ball with this measure
centered at 0, and hence it is bounded by v37R. Taking Cy = (2C)~ %, ¢, = C/C,
and assuming that ¢ < Oy R? we obtain the desired conclusion. O

PROPOSITION 2.6. Let wg be a nonnegative smooth function with support con-
tained in B(0; Ro). Suppose that ||wol|p1(m2y < K. Then for every 6 > 0, there exists
b=b(K, Ry, 6) >0 such that for everyt >0

|supp w(-, ) N B(0; (R + bt)1/3)°| < 6.

Proof. The proof follows the reasoning of the proofs of Propositions 2.3 and 2.4,
but it is more intricate.
We begin by choosing b; > 0 such that for 0 <t <1

|supp w(-,t) N B(0; Ry + b1t)¢| < 6.

This is done using Theorem 1.5, with T' = 1.
Next we choose by > 0 such that for ¢t > 1

|supp w(-,£) N B(0;8Ry + (bat)/3)¢] < 6.

This is accomplished using Theorems 2.5 and 2.2, as we shall describe below.
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Denote R(t) = 8Rg + (bat)'/? for some by to be determined.

First we choose by large enough so as to guarantee that, for some C3 > 0, we
have t < t+C5 < Ca(R(t))3, where Cy comes from Theorem 2.5. Next, we invoke the
estimate on m(R(t)/4), given by Theorem 2.2, together with Theorem 2.5. After a
number of straightforward estimates, we observe it is enough to find b, large enough,
so that

C Ce(bat)t/3
5) <6

Cuby(1 +t7) (
ba
for certain constants Cy, Cs, and Cg. Then it is enough to note that if by is large
enough, the left-hand side of the inequality above is monotone decreasing as a function
of ¢t and its value at t = 1 converges to zero as by — 0.
Finally, it is easy to see that we can choose b so that

Ro + byt < (R +bt)/3, 0<t<l1,

SRy + (bot)Y/? < (RS +bt)'/3, 1<t < oo.

This concludes the proof. 0

3. Concluding remarks. We have proved several results concerning the amount
of vorticity near infinity, arising from flow with compactly supported initial vorticity,
explicitly formulated as uniform estimates on approximate solution sequences. Let us
now consider a weak solution w of the incompressible 2D Euler equations, obtained as
the weak limit of an approximate solution sequence u®. Let w = curl u, w® = curl u®.
We restrict ourselves to approximate solution sequences obtained by mollifying the
initial data and exactly solving the equations.

First we assume that wy = w(-,0) € LP(R?), 1 < p < 2. If p = 1, we have to as-
sume in addition that ug = u(-,0) € L (R?). The estimates obtained in Proposition
2.6 for nonnegative vorticities, in Corollary 1.4 for vorticities without sign restric-
tion and p > 1, and in Theorem 1.5 if p = 1, which are all estimates on the size of
the support of vorticity near infinity do not extend in any obvious way to the weak
limit, because the measure of the support of an LP function is not even weakly lower
semicontinuous. These uniform estimates on the size of the support of vorticity im-
ply estimates on the pth power integral of vorticity near infinity, which remain valid
for the weak limit because the pth power integral is a weakly lower semicontinuous
functional over LP.

Let us be more precise. We will detail the argument in the case of a nonnegative
initial vorticity wy € LE(R?), 1 < p < 2, supported in B(0; Ry). We begin by observing
that the mollified initial data wf is uniformly pth power integrable, by the Dunford-
Pettis theorem, since |w§[P converges strongly in L' to |wp|P. This means that, for
every 1 > 0, there exists § > 0, independent of ¢, such that

/ wilPde <,
E

for any measurable set E' with Lebesgue measure less than 6. Fix > 0 and consider
the corresponding 6. We use Proposition 2.6 to obtain b > 0, depending only on
lwollzr, on Rp, and on 6 such that

|supp w* (-, t) N B(0; (Rg + bt)1/3)c| < é.



BOUNDS ON THE DISPERSION OF VORTICITY 151

Hence, if E¢ is the backwards flow through u® of supp we(-,t) N B(0; (RS + bt)/3)e,
then

/I |>(R34bt)1/3 Wz, t)de = / wo(w)de < 1.
| >(R3+bt c

since |E¢| < §. Clearly, by the weak lower semicontinuity,

/ WP (z, e < .
|z|>(R3+bt)1/3

Analogous results for vorticity without sign restrictions follow from Corollary 1.4 and
Theorem 1.5 in the same manner.

For VSID, the only result obtained that extends, in the sense above, to an estimate
on the weak limits is Theorem 2.2, again because the total variation of measures is
weak-* lower semicontinuous.

We have mentioned that there is no obvious way to pass the weak limit in the
estimates on the size of the support of vorticity near infinity. We will show now that
if wg € LP(R?), 1 < p < 2, then we can produce an estimate on the size of the support
near infinity of any weak solution obtained as a weak limit of smooth approximants
generated by mollifying initial data.

THEOREM 3.1. Let wy € LP(R?), 1 < p < 2, and let u be a weak solution of the
2D Fuler equations, obtained as the weak limit of an approrimate solution sequence
{u®}, obtained by mollifying the initial data. Let w® = curl u®. Then, for almost
every t > 0 and every R >0

lsupp w(-,t) N B(0; R)°| < limsup [supp w®(-,¢) N B(0; R)“|.
e—0

Proof. Fix T' > 0 and let Ry > 0 be such that B(0; Ry) contains the support of
w§ for every e.

We begin by observing that w = curl w is the unique renormalized solution of the
linear transport equation:

ft +u- Vf = 07
(3. { Y

as defined by DiPerna and Lions; see [3].
To see this, first note that the restriction to p > 1 is needed to ensure that
u € L'([0,T]; W51 (R?)). Of course, div u = 0. We also have that

(3.2) € L}([0,T]; L*(R?)) + L' ([0, T]; L*°(R?)).

u
1+ |z

(See Remark 1.1 and Section 1.C of [4].) In order to show that w is a renormalized
solution of (3.1), we will make use of the uniqueness result, Theorem II.3, and the
stability result, Theorem IL.4, in [3]. Both of these results require u as above except
that u/(1+]z|) has to belong to L*([0, T]; L' (R?))+ L ([0, T]; L>°(R?)). However, it is
easy to see that one can substitute this condition with (3.2) and still prove uniqueness
and stability.

Next we check the hypothesis of the stability result. We know that w is the
weak-x limit in L°°([0, T]; LP(R?)) of the sequence {w®}, which is a smooth solution
(and hence a renormalized solution) of (3.1) with u replaced by u® and wy replaced
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by w§. Additionally, the initial data w§ converge strongly to wg in LP. Therefore, by
Theorem II.4 of [3], w is the unique renormalized solution of (3.1).

Let X¢ be the Lagrangian map associated with the flow u® and X be the unique
renormalized Lagrangian map associated with u, by Theorem II1.2 of [3]. Then, by
a time-dependent version of the stability of Lagrangian maps, Corollary III.1 in [3],
we conclude that X¢ — X locally uniformly in time and locally in measure in space.
Therefore, for every n > 0, there exists g9 independent of ¢ € [0, 7] such that for
e < ep,

{a € B(0; Ro)[|X*(a,t) = X(a,t)| > n}| <.

Fix n > 0 and choose g9 = £¢(n) as above. Let R > 0. Then, for any ¢ < ¢y, we
have that

{a € B(0; Ro)|| X (e, t)] > R} < [{a € B(0; Ro)[|X" (e, 1) — X(a, t)] > n}]
+ e B(0; Ro)[| X® (o, £)] > R —n}|
<n+[{a € B(0; Ro)||X*(a, )| > R —n}|
<n+{a € B(0; Ro)|R —n < |X*(a, )] < R} + [{a € B(0; Ro)|| X" (e, )| > R}|
<0+ (2rRn —n*) + {a € B(0; Ro)l| X*(a, t)| > R},

where the last inequality follows from the fact that X¢ is area-preserving. Therefore,
taking limsup, _,,, we have

[{a € B(0; Ry)|| X (e, )| > R}| <limsup [{a € B(0; Rp)||X®(c,t)| > R},
e—0

since we may assume that £9(n) — 0 as n — 0.
We conclude by observing that the renormalized Lagrangian map X is area-
preserving and w(X (e, t),t) = wo(a) (see Theorem II1.2 in [3]); hence

[{a € B(0; Ro)|[X (e, t)| > R}| = |supp w(:,1) N B(0; R)?|. O

Let u be a weak solution of the incompressible 2D Euler equations with vorticity
w = curl u € L*=([0,T]; LP(R?)), p > 1. It was mentioned in the proof of Theorem 4.1
in [8] that w is the unique renormalized solution of the vorticity equation, regarded
as a linear transport equation. We included an outline of the proof of this fact for
the sake of completeness. Of course, given Theorem 3.1 above, the uniform estimates
derived in Corollary 1.4 and in Proposition 2.6 remain valid for the weak solution, if
the initial vorticity belongs to LZ, p > 1.

One natural question at this point is how close these estimates are to being
optimal. In this respect, we do not have anything to add to the comments made
by Marchioro in [10] and we refer the reader to the discussion contained there. We
are left with no answer to the question we started with, i.e., whether the support
of vorticity remains compact as time evolves. We can say only that the knowledge
developed here does not appear to be enough to answer this question.

Finally, we note that since this article was first distributed in preprint form, a
significant improvement of Marchioro’s cubic-root estimate was obtained by Serfati;
see [11]. A similar, if slightly weaker improvement was obtained independently by
Iftimie and Sideris in [6]. By using the conservation of the center of vorticity, they
observe that Marchioro’s space-time cubic-root parabola can almost be improved to a
fourth-root parabola. It would be possible to rewrite section 2 of our work reflecting
these improvements, in a straightforward manner.
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A NECESSARY AND SUFFICIENT CONDITION FOR
PALAIS-SMALE CONDITIONS*

KUAN-JU CHENT AND HWAI-CHIUAN WANGT

Abstract. In this paper we prove the following assertions: (1) ay = apr = ar = ar; (2) let
Qo = Q1 UQg, where Q1 N Q2 is bounded, and let a; = a(€2;) be the index of J in ©; for ¢ = 0,1, 2.
J satisfies the (P.S)qo-condition if and only if the inequality ap < min{c1, a2} holds; (3) the union
of a solvable domain and an unsolvable domain may be solvable and the union of two unsolvable
domains may be solvable.

Key words. Palais—Smale condition, solvable domain
AMS subject classifications. 35J20, 35J25

PII. S0036141098338016

1. Introduction. The study of Esteban—Lions domains is the cornerstone and
the starting point for understanding the existence of solutions of equations in un-
bounded domains. In this paper, we examine the existence of solutions in perturbed
Esteban-Lions domains.

LetNE?and2<p<2*,WhereZ*:%forNEB,T:ooforN:Z.
Consider the semilinear elliptic equation

— — |ylP—2 i
(1.1) { Au+u=[ufuy in Q,

u € Hy(Q),

where Q is a domain in RY and H} (Q) is the Sobolev space in Q. Tt is well known
that (1.1) in a bounded domain or in the whole space RY admits a positive solution,
but the same equation in an Esteban—Lions domain does not admit any solution. The
Esteban-Lions domain is defined as follows.

DEFINITION 1.1.  We say that a proper unbounded domain Q in RN is an
Esteban-—Lions domain if there is x € RN, ||x|| = 1 such that n(x)-x > 0, n(z)-x Z0
on 99, where n(x) denotes the unit outward normal to O at the point x.

Let the potential operators a : H} () — R, b : H} () — R, and the energy
functional J : H} () — R be given by

atw) = [ (196 +a2).
b = [ Jul”

1 1
J(u) = §a(u) — Eb(u)
In the following definitions, we simply denote Palais—Smale by (PS).
DEFINITION 1.2.
(1) For B € R, a sequence {u,} C H}(Q) is a (PS)g-sequence for J if J(u,) —
B and J'(uy,) — 0 strongly as n — oo;

*Received by the editors April 9, 1998; accepted for publication (in revised form) December 17,
1998; published electronically December 3. 1999.
http://www.siam.org/journals/sima/31-1/33801.html
TDepartment of Mathematics, National Tsing Hua University, Hsinchu, 300, Taiwan, Republic of
China (d837201@math.nthu.edu.tw, hwang@math.nthu.edu.tw).
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(2) B € R isa(PS)sg-value for J if there is a (PS)g-sequence for J;

(3) J satisfies the (PS)-condition if every (PS)g-sequence for J contains a con-

vergent subsequence;

(4) J satisfies the (PS) condition if, for every 8 € R, every (PS)g-sequence for

J contains a convergent subsequence.

Note that J is of class C'! (see Rabinowitz [9, Proposition B.10]) and J clearly
satisfies the mountain pass hypothesis: there are r, § > 0 and e € Hi (), such that
e ¢ B(0,r), J(e) =0, J(u) > 6 >0 for u € 0B(0, 7).

Let

I =inf{a(u) | b(u) = 1};

ap = (% _ %)Ip/(p—2);

M = {u € Hg (2)\{0} | a(u) = b(u)};
an :uiélj\f/f J(v);

I'={ge€C(0,1],H}()) | g(0) = 0,9(1) = e}, where J(e) = 0;
ar =inf max J

t .
Inf max 9(?));
I'"={K C Hj (Q)|K is closed, connected, and 0, e € K } ;

ar = inf max J (u).
Kelvuek

TN

Next we assert the following theorem.

THEOREM A. aj = apy = ar = ar.

For convenience we state the following definition.

DEFINITION 1.3.

(1) We say that a() = ay is the index of the energy functional J in €

(2) We say that a solution u of equation (1.1) is a ground state solution if J(u) =
a(Q), and is a higher energy solution if J(u) > a(€2).

REMARK 1.

(1) If the Nehari minimization problem oy or the minimaz problem ar admits a
solution u, then u must be a ground state solution. If J satisfies the (PS)q(q)-
condition, then the Nehari minimization problem ap; and the minimaz prob-
lem ar admit a ground state solution.

(2) Applying Theorem A, we prove that ar is independent of the choice of e.

(3) Rabinowitz [9, p. 19] asked whether ar = ar. We answer his question for our
special energy functional J.

(4) Theorem A simplifies many calculations.

Let Q¢ = Q7 U Qy, where Q1 N Qs is bounded,

M; = {u € Hy () \{0} | a(u) = b(u)},

and «; = a(£;) be the index of J in Q; for i = 0,1, 2.

In this article, we will study the existence of positive solutions of (1.1) in a proper
unbounded domain 2. In fact, we give a necessary and sufficient condition in €2, in
which J satisfies the (PS),,q)-condition as follows.

THEOREM B. J satisfies the (PS)q,-condition if and only if the inequality ag <
min{ay, as} holds. In particular, if the inequality ap < min{ay,as} holds, then there
is a solution ug of (1.1) in Q.

In section 4, Theorem B is applied to prove that the union of a solvable domain
and an unsolvable domain may be solvable. We also assert that the union of two
unsolvable domains may be solvable. Here we need another definition.
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DEFINITION 1.4. We say that € is solvable if there exists a positive solution of
(1.1) in Q; otherwise, ) is unsolvable.

2. Palais—Smale values. In this section, we study the set of all (PS)s-values
for J.

Let {u,} C H3(Q) be a (PS) s-sequence for J; then clearly 8 > 0 and {u,} is
bounded in Hj (). Let F be the set of all (PS)g-values for .J, where 3 > 0.

Moreover, the three important numbers ay, aps, and ar are in F.

LEMMA 2.1. aj, ap, and ar are (PS)-values for J.

Proof. Lien—Tzeng-Wang [7] proved that aj is a (PS)s,-value for J. Using
two different methods, the Ekeland variational principle and the deformation lemma,
Brezis—Nirenberg [2] prove that ar is a (PS),.-value for J.

Using the Ekeland variational principle, Stuart [11, Lemma 3.4] asserted that
there is a (PS)q,,-sequence as well as a minimizing sequence for ay, in H}(Q). We
generalize his result and prove that every minimizing sequence for aps is a (PS)q,,-
sequence for J as follows.

Let {u,} C M be a minimizing sequence for J : a(u,) = b(u,) for all n =
1,2,3,... and J(u,) = (5 — %)a(un) = apy + o(1) as n — co. Then

2
(2.1) a(uy,) = zpraM + 0(1) as n — oc.

Forn=1,2,..., denote
1) = [ funl? Puni o € HYO),

Let g€ H}(Q) and ||¢]|z1 = 1; there exists s > 0 such that ||s¢||%, = |[so[[b. We

i 2
conclude that s = ||¢||5~* and
11 p—2 P—2, 2%
an < (5= 1) ool = 252 = P2 ol

Therefore ||¢]|, < (%QM)% and

We have

2 2
(2.2) I full -1 < (p_Z)QaM) +o(1) as n — oo

Furthermore,

(2.3) fu ( Un ) = ab(“") = blun) /2 = (2”2aM>é +o(1) as n— oo.

[[nl o (un)!/? p=
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By (2.2) and (2.3) we conclude that

(2.4) fullg—r = <p2_p204M) 2 +o0(1) as n — oo.

By the Riesz representation theorem, for each n there is w, € H}(2) such that, for
each ¢ € H}(Q),

fu(p) = (wn, ) = /Q(an Vo +wnp),

2 2
(2.5) e = lfalls = (525080 ) " +01) a5 0 .

We conclude that

2
(2.6) (Wny Un) = fr(un) :/ lun|P = 7pon +o0(1) as n — oo.
Q p—2
By (2.1), (2.5), and (2.6) we obtain
lun — wnH%ﬂ = Hu2nH%ﬂ - 2<una2wn> + HwnH%{l
p p 14
p—2aM p_2aM+p_2aM+o()

= o(l) as n — .

For € Hy(Q), |l¢l|m =1, we have

(T(un)g) = /Q (Vitn - Vo + o) — /Q i P22t

(Un,s P) = (Wn, ) = (un — Wy, @),

S0
(I (un)s @) < lun — wnl e
We conclude that
J (un) = o(1) strongly in H '(Q) as n —oo. O

In order to study the number 3 in F, we study the Nehari manifold M through
the unit sphere S and the zero energy manifold Z defined by

S = {ue HE () |[lull j =1},
7= {ue Hy (@ \0} | Jo(w) = 20w }.

Note that M contains every solution of (1.1). We claim that M and Z are C!!
isomorphic to the unit sphere S. In fact, for A > 0, u € S, let

hu(N) = J (Au) = %A%(u) — ]%)\pb(u).
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Then

{ !, (X) = Aa(u) — AP~ 1b(u),
hiu(A) = a(u) — (p — HA~2b(u).

From these properties we can take uniquely r,, s, and ¢, € R4 such that 0 < r, <
Su < tyu, Syu € M, t,u € Z, and

0= hy(ra) = hy,(su) = hu(tu).

Let m:S — Mand z : S — Z be given by m(u) = s,u and z(u) = t,u. We apply the
implicit function theorem and the Sobolev imbedding theorem to obtain the following.

LEMMA 2.2.

(1) m is bijective and of C11. Moreover M is path-connected and there erists a

constant ¢ > 0 such that, for w € M, ||u||g > ¢ and J(u) > ¢;

(2) z is bijective and of CY1. Moreover Z is path-connected and there exists a

constant ¢’ > 0 such that, for u € Z, ||u||g > .

In the following two lemmas, we assert that every number § > 0 in F admits
several interesting properties.

LEMMA 2.3. Let {un} C Hg(Q) be a (PS)4-sequence for J with § > 0. Then
there is a sequence {s,} in Ry such that {spun} C M and J(spu,) = 8+ o(1) as
n — 0.

Proof. By Lemma 2.2(1), there is a sequence {s,} in Ry such that {s,u,} C M
and h/,(s,) = 0 for each n. Thus s,a(u,) = s2~'b(u,) for each n. That a(u,) =
b(un)40(1) as n — oo implies s, = 140(1) as n — oco. Therefore |J (uy,) — J (sSpun)| =
o(1) as n — o0, or J(spun) =B+ o(1) as n — oo. |

LEMMA 2.4. Let 3 be in F. Then (1) 3> ar; (2) 8> am; (3) B> ar.

Proof. Let {u,} C H}(Q) be a (PS)g-sequence for J with 3 > 0: that is,

{ saun) — %b(un) =03+0(1) as n — oo,
a(uy) — b(uy,) = o(1) as n — oo.
Then {u,} is bounded in Hg () and (% — %)a(un) = [+ o(1) as n — oc.
(1) Let wy, = ty(b(u,))~ VP, then b(w,) = 1 and a(wy,) = a(u,)b(u,)~2/? > 1.
Thus a(u,) > IP/®=2) +o(1) as n — oo, or B> (3 — %)Ip/(p_m =aj.
(2) By Lemma 2.3, there is a sequence {s,} in R such that {s,u,} C M and
J(spun) = B+ 0(1) as n — oco. Therefore 5 > ayy.
(3) By Lemma 2.3, there is a sequence {s,} in R, such that {s,u,} C M and
J(snun) = B40(1) as n — oo. By Lemma 2.2 (2) there is a sequence {t,} in
R, such that {t,u,} in Z. Since the manifold Z is path-connected, there is a
path 7, in Z which connects t,u,, to e. Let 7/, be the line segment connecting
0 and t,u, and the path ~,=v, Un,. We obtain

ar §Orgtagxl J(y(t)) = J (spup) = B+ 0(1) as n — oo.

Thus 8 > ar. |
By Lemmas 2.1 and 2.4, we have the following theorem.
THEOREM 2.5. aj = apy = ar.
Theorem 2.5 has the following two corollaries.
COROLLARY 2.6. The minimax number ar is independent of the choice of e € Z.
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COROLLARY 2.7. ar = ar.

Proof. Since I' C T, we have ar > ar.

We claim that KNM # @ for each K € I". If not, let K € I satisfying KNM = §.
Let K1 = {u € K\{0} | u € (0,s,u)} U{0} and K2 = {u € K | u € (syu,0)}. Then
K, and K, are nonempty and relatively closed in K, K1 N Ky = () and K; UKy = K.
This contradicts that K is connected.

Assume that ar > ar/. By Theorem 2.5, a(f2) = ar, there exists K € I such
that

max J (u) <u1é11;f/[ J(u).

Let ug € K N M; then we have

J (ugp) §£n€a1)(< J (u) <ulé11{‘/l J (u) < J (ug),

a contradiction. Therefore ar = ar-. 0

We conclude that the numbers oy, aps, ar, and ars are the same and call any
one of them the index () of J in Q. Thus a(Q) € F and F C [a(f2), 00). In order
to understand more about the index a(2), we give the following definition.

DEFINITION 2.8. Let 3 C s be two unbounded domains in RY. We say o
is a translation-union domain of Q1 if there are, for i = 1,2,..., 1, 1y € RY with
||7:]| = 1, and sequences {ri} of positive numbers, with ri, — oo as n — oo such that

Qo =U Up2, (Q +rim).

EXAMPLE 2.9.

(1) Let Q C RY be a ball-up domain: that is to say, that for any r > 0 there
exists © € Q such that B(x;r) C Q. Then RY is a translation-union domain
of Q.

(2) Givenr >0, s€ R, let

A" = {(x1,209,...,2n) € RN |23 -+ 2%, <r?}

AT = {(x1,29,...,2n) € RN |23 4+ 2% <r’ oy > s);
A"\w, where w C A" is a bounded domain;

D" ={(z1,22,...,TN) €RN\x§+~~+x?\, <r?}

DT ={(z1,22,...,TN) €RN\I§+~~+I?\, <r? x> sk
D™\w, where w C D" is a bounded domain.

Then A" is a translation-union domain of A%, and of A"\w; D" is a translation-
union domain of D and of D™\w; and A"UD" is a translation-union domain
of AL U D7 and of (A"\w) U (D"\w).

We have the following important properties.

ProrosiTiON 2.10.

(1) Let G Q2 and J : HY(Q2) — R the energy functional. If J satisfies the
(PS)a, -condition or in particular oy is a critical value, then as < ay.

(2) Let Q3 be a translation-union domain of Q. Then a(21) = a(Qs), J does
not satisfy the (PS)q,-condition, and the only possible solutions of (1.1) in
Q1 are higher energy solutions.
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Proof.

(1) Q1 C Qg, so as < ay. Suppose that J satisfies the (PS),,-condition; then
there exists ugp € M; such that uwg > 0 and J(ug) = ;. To the contrary,
assume ag = aj; then J(up) = ag = infyem, J (u). It is known that every
minimizer of the problem as = inf,em, J (u) is a critical point of J. There-
fore ug solves (1.1) in 5. By the maximum principle, ug > 0 in Qo. This
contradicts ug € Hg(21). Therefore as < ;.

(2) Q1 C Q50 ag < ay. Let {u,} C H}(Q2) be a minimizing sequence of as :

J(un) = as +0o(1) asn — oo,
a(un) =b(uy,) forn=1,2,....

By the definition of translation-union domain, Qs = Ul_; US| (Qy + ri7),
it suffices to prove the case I = 1. Let F™ C Q1 + r, 7 be a bounded domain,
F™ /7 Qg as n — oo and O,, a bounded and open set in €2; satisfying
F* —r,7 CcC O,. Define

(z) = Up(x+rpr) fx € F™ —r,T,
U= 0 if 2 & O,.

Then
on(z) € Hy (),

a(up) = a(v,) + o(1) as n — oo,
b(un) = b(vy,) + o(1) as n — oo.

By Lemma 2.2(1), there exists s, > 0 such that a(s,v,) = b(spvp), or s, =
1+o0(1) as n — o0. J(spvp) = (3 — %)a(snvn) = (3 - %)sia(vn) = as +
o(1) as n — oo. Therefore ay < as. We conclude that a; = as. Then we
apply the first part to conclude that J does not satisfy the (PS),,-condition.
As in the first part, if u is a ground state solution of (1.1) in €, then by
the maximum principle, u is a positive solution in €25. This contradicts u €
H}(€Q1). Therefore the only possible solutions of (1.1) in ©; are higher energy
solutions. O

There are some relative properties.

LEMMA 2.11.

(1) There is a ground state solution of (1.1) in the infinite strip A";

(2) Let Q = A"\w, where w C A" is a bounded domain. Then the only possible
positive solutions of (1.1) in Q are higher energy solutions;

(3) Let Q = A™\w, where w C A" is small and regular. Then there is a positive
solution u of (1.1) in €;

(4) There is a (PS)s-value B for J such that 8 > a(Q).

Proof.

(1) See Lien-Tzeng-Wang [7, Example 4.3] for the proof.

(2) The proof is by Proposition 2.9(2).

(3) See Hsu—Wang [5, p. 1002] for the proof.

(4) Let u and 2 be as in (3). Set § = J(u) and u, = u for each n to conclude
the proof. 0

To get further information on the distributions of F, we need the following two

important results.
PROPOSITION 2.12. The only positive solutions of (1.1) in RY are ground state
solutions. Moreover the infimum a(RN) is achieved by a unique positive regular
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ground state solution @ € H'(R™) of (1.1) such that @ is spherically symmetric about
some point xo in RY, @' (r) <0 forr = |z — xo|, and

lim r oz e i (r) =y > 0,
T—00

lim 7= e (r) = —».
Proof. See Gidas—Ni—Nirenberg [4] and Kwong [6]. 0
LEMMA 2.13 (decomposition lemma). Let {u,} C H}(Q) be a (PS)g-sequence
for J. Then there is a subsequence {u,}, integer 1 > 0, | sequences {xil}:ozl in RV,
i=1,...,1, function u, and w; for 1 < i <1 such that

NG+ = AP i Q@ e HY(Q),
—Aw; +w; = |w; [P~ 2w; in RY, w; e Hl(RN),
Up = U+ Zé:l w;(- — 21) 4+ o(1) strongly in H*(RY) as n — oo,
J(un) = J(@) + Yi_y J=(w;) + o(1) as n — oo,
|2t | = 00, |zt —al| > o0 for 1<i#j<Il, asn— o

where J®(u) = %fRN(|Vu|2 + u?) — I%fRN P for w € HY(RN). In addition, if
Uy >0, thenu >0, w; > 0 for all 1 < i < m, and each w; can be chosen to be the
unique solution w in Proposition 2.11.

Proof. See Lions [8], Struwe [10, p. 169], and Lien—Tzeng—Wang [7, Theorem 4.1]
for the proof. 0

Now we apply Proposition 2.11 and Lemma 2.12 to get the following.

PROPOSITION 2.14. If 3 € F, then 3 = J(u) + ma(RY), where u is a solution
of (1.1) in Q and m=0,1,2,....

3. Palais—Smale conditions. In this section, in terms of the index «(2), we
give a necessary and sufficient condition for the energy functional J to satisfy the
(PS)Q(Q)—COHditiOn.

Let Qo = Q1 U Qo, where Q1 N Qs is bounded, and a; = «(£2;) be the index of
J in Q; for i = 0,1,2. Since H () C H{ () and M; € M, for i = 1,2, we have
ap < min{ay, as}, and the following theorem.

THEOREM 3.1. The energy functional J satisfies the (PS)q,-condition if and
only if the inequality ag < min{ay, s} holds. In particular, if the inequality g <
min{ay, ag} holds, then there is a ground state solution ug of (1.1) in Q.

Proof. The sufficient condition is proven as follows: Suppose that oy < min{as, as}.
Let {un} C H}(Qo) such that

J(un) = ap 4+ 0(1) as n — oo,

J' (uy) = o(1) as n — oo.

Then
0(1) = <J/(un)a un> = a‘(un) - b(un) as n — oo,
ag +0(1) = J(uy,) = (; - ;) a(u,) +o(1) as n — oo.

Thus we have
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We claim that for each subsequence of {u,} still denoted by {u,}, there are r > 0,
b > 0 such that for @, = Q¢ N B(0,r),

(3.1) / lunl? > b.

s

If not, there are {r,}, r, — oo and a subsequence {u,} such that for @, = QN
B(0,ry,),

(3.2) / |un P =0(1) as n — oo.

n

Let £ € C2°([0,00)) such that

. 0 fOI'tE[OalL
0<¢E<, §(t)—{1 for t € [2, 00).

Let &n(z) = 5(7!—:') and wy, = £2u,. Since {w,} is bounded in HE(Qo),
0(1) = <Jl(un)7wn>
= / (E2|Vun|? + 26,un V&, - Vu, + E2u2) — / £2|un,|P as n — oo.
Qo Q0

Note that [V&,(z)] < ;= and (3.2), so

EnunVE, - Vu, = 0(1) as n — oo,
Qo

and

2
(3.3) ENuy, P = / |un|? 4+ 0(1) = L ap+o(l) as n — oo for g > 0.
Q0 o p—2

We conclude that
(3.4) / E(|Vun)? +u2) =o(1) as n — oo.
Qo

Let v, = &uupn. By (3.3) and (3.4),
1 1
Jvn:f/ anz—i—vi—f/ v [P
()290<| | )pﬂoll

1
5 / (|an‘2ui + fi(lvunp + ui) - 26u, V&, - Vun)
Qo

2
1

_ En®|tn [P
P Jo,

1 2p 1 2p
e S
2p—2 pp—2
=ap+o(l) as n — oo.

ag + o(1)

As in the same line of the proof of Lemma 2.1, because ag = a s, we have J'(v,) =
o(l) as n — oo. Since Q1 N Qy is bounded for large n, v, = 0 in Q3 Ny and
vp, = v} + 02, where vi, € H} (), i = 1,2,

vp(z) ifzey

n() = { 0 otherwise for i =1,2.
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We obtain
J(w)=o0(1)asn — oo fori=1,2.
Assume

JWh)=c¢;+o(l)asn — oo fori=1,2,

J'()=o0(l)asn — oo fori=1,2,

where ¢; + ¢ = ap. Since ¢; and c¢p are (PS)-values, they are nonnegative. At least
one of ¢y, ¢y is positive, say ¢; > 0. By Lemma 2.4, ¢; > aq; thus ag > ¢; > ay.
This contradicts ap < min{ay, as}. Therefore there are r > 0, b > 0 and for each
subsequence {u,} such that for Q, = Qo N B(0, ),

/ lunl? > b.
Since {u,} is bounded in H}(Qp), there exists a subsequence {u, } such that
Up — U

weakly in H} (), a.e. in €, and strongly in L (£). Then uo is a nonnegative

solution of (1.1) in Q. By the fact that fQ |un|P > b for each n and by the compact
embedding theorem, we have
/ |u0|p > b.
Q

s

Thus ug # 0. By the maximum principle, ug is a positive solution of (1.1) in . Thus
ug € My and

J > inf J = «p.
(uo) > nf (u) = o

Let p,, = uy, — up; then {p,} is a Palais-Smale sequence for J:

J(pn) = J(un) — J(uo) +o(1) = ag — J(ug) + o(1) as n — oo,
J/(pn) = 0(1) as n — oQ.

Since ag > J(ug), ag = J(ug). Now

o(1) = J(pn) = (; - ]19) 2 + o(1) as n — oo.
Thus
||pnl|3: = o(1) as n — oo
or

u, — ug strongly in H} () as n — oc.

We conclude that J satisfies the (PS),,-condition.
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The necessary condition is proven as follows: Suppose that g = min{ay, as}.
Without loss of generality, let g = @1 and ng Q. We claim that J does not
satisfy the (PS)q,-condition. In fact, suppose on the contrary, J satisfies the (PS)q,-
condition in €. Then we claim that J satisfies the (PS)q,-condition in Q. In fact, let
{un} C HE(Qq) satisfy J(u,) — a1 and J'(uy,) — 0. There is a subsequence {u, } and
u € H}(Qo) satisfying u,, — u strongly in H}(Qo); that is to say u, — u strongly
in H}(Q1). Therefore J| w3 (q,) satisfies the (PS)q, -condition. By Proposition 2.9 (1),
ag < aq. This is a contradiction. O

4. Solvable and unsolvable domains. In this section, we apply the results in
section 3 to solve (1.1) in an unbounded domain €.

Esteban-Lions [3, Theorem I.1] proved the following.

PROPOSITION 4.1. Equation (1.1) in an Esteban—Lions domain Q@ does not admit
any nontrivial solution. In particular, (1.1) in either Rf, or A%, or D? does not
admit any nontrivial solution.

We need the following results whose proofs are routine.

LEMMA 4.2. Let B, = {z € RY| ||z]| < 7}, O be a bounded domain containing
OimR™", m>1 Q=0xR, and D, =rQ={rx |z € Q}, r > 0. Then

(1) lim, o a(B,) = a(RN);

( 1imr~>0+ a(B’F) 003

(

(

2)
3) lim, oo a(D,) = a(RY);

4) lim, o4 a(D,) = cc.

It is clear that a(A") < a(AL), a(D") < a(D?T), where a(A”™) and a(D") admit
minimizers. By Proposition 2.9(2), we obtain the following lemma.

LEMMA 4.3. «(A") = a(A%) and a(D") = a(D?) for any s € R.

Note that B, = {z € RY | ||z|| < t} is solvable, but Aj is unsolvable since it is an
Esteban-Lions domain. However, their union ; = B; U A, for a fixed r, is solvable.

THEOREM 4.4. There exists tg > 0 such that if t > tg, then £y is solvable.

Proof. Note that a(A”) = a(Af). Since A"G RY is solvable, by Proposition 2.9(1),
a(A}) > a(RY). By Lemma 4.2(1), there exists t; > 0 such that if ¢ > o, then
a(Af) > a(B:) > a(Q). Then by Theorem 3.1, € is solvable. 0

Let 7, t be the fixed positive numbers, s € R, zo = (0,...,r), Qs = By(xo)UD" ,
and D", . = {(71,22,...,2N) € RY | 234 -+ 23 <% s> 2 > —s}. Then we
have the following theorem.

THEOREM 4.5. There exists sqg > r such that if s > sg, then Qg is solvable.

Proof. Since D" is solvable, we have «(B; () U D") < a(D"). Similar to Lemma
4.2(1) we obtain lims_,oo a(Bi(zo) U D™, ;) = a(B¢(xg) U D7), so there exists sg > r

such that if s > s¢, then a(B(zo) U Disy) < a(Bi(ro) UD, ) < a(D") = (D).
Since By(xp) is solvable, we have a(By(z9)UD" ) < a(By(zo)). Then by Theorem 3.1,
Q, is solvable. |

AT , and D", are Esteban-Lions domains, so they are unsolvable. However, their
union is solvable.

THEOREM 4.6. Let t < r be fixed. There exists sy > r such that if s > sg and

Q,=A",U D", then for p >0, , is solvable.

—89

Proof. Let s be as in Theorem 4.5, and for p > 0, Q, = A~ , U (B;(zo) U D).
By Theorem 4.5, By(xo) U D", is solvable; thus a(Q,) < a(Bi(zrg) U DT ,). Note that
a(Bi(zo) UD",) < (D) = a(AZ ), or a(f2,) < a(A~,). Then by Theorem 3.1,
for p > 0, Q, is solvable. d
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GLOBAL EXISTENCE OF STEADY SUPERSONIC POTENTIAL
FLOW PAST A CURVED WEDGE WITH A PIECEWISE
SMOOTH BOUNDARY*

YONGQIAN ZHANGT

Abstract. In this paper we use a modified Glimm scheme to construct a global weak solution to
the steady supersonic potential flow past a two-dimensional wedge with a piecewise smooth boundary,
small vertex angle, and small total variation of the tangent angle along each side.
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1. Introduction. The problem of steady supersonic flow past a wedge with a
smooth boundary has been extensively studied by many authors (for instance, see
[1, 2,3, 6,9, 11, 14] and references therein). The simple case in which both sides are
straight was solved in the book [3] by the shock polar. In [9, 14], applying the theory
of quasi-linear hyperbolic systems, Li and Schaeffer give the local existence of steady
supersonic flow past the two-dimensional curved wedge with the vertex angle less than
the critical value. In [1] Chen extended this result to the case of three-dimensional
wedge. Recently Chen established the global existence and asymptotic behavior of
steady supersonic flow past a convex combined wedge by making use of hodograph
transformation (see [2]).

In this paper we study the potential flow past a two-dimensional wedge with a
piecewise smooth boundary. Here, as usual, we consider the case of irrotational and
polytropic gas in which the pressure p and the density p are related by p = p(p) = Ap?,
where A is some positive constant and « > 1 is an adiabatic exponent. For simplicity,
we study the problem for the half of the wedge, that is, we consider the problem

(pu)z + (pv)y =0,

Uy — Uy =0 in Qn{z >0},
(u,v)- n=0 on 01,

(ua 'U)|w<0 - (qOCMO)a

(1.1)

under the following assumptions.
(A1) The Bernoulli relation holds as follows:

1
1 1\ [y—1 T
(12)p=A"7= <7;Y 2 - L?v q2) = ATT [727 (@~ qz)]

with the constant ¢, = / z—ﬂc*. Here c, is the critical speed, ¢ = vu? + v2,
v > 1 is the adiabatic exponent, A > 0 is some constant.

*Received by the editors December 4, 1997; accepted for publication (in revised form) March
5, 1999; published electronically December 3, 1999. This work was partially supported by NSFC
Project 19701009 and the Mathematics Center of State Education Commission of China.
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TInstitute of Mathematics, Fudan University, Shanghai 200433, People’s Republic of China. Cur-
rent address: Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka,
Osaka 560-0043, Japan (zhangyq@math.sci.osaka-u.ac.jp).
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N
\\\\
Q\ y =b(x)
Fic. 1.1.

(A2) The velocity of incoming flow ¢, is a constant and ¢, > ¢x.

(A3) There exists b € C[0,4+00) with b(x) < 0 for z > 0 and b(0) = 0 such
that @ = {(z,y)lz < 0,y < 0} U {(z,v)|ly < b(z),z > 0}. In addition
there exists a set of points {z}._; C (0,+00) such that b € C®[zy_1,zx]

for 1 < k <[ and b is affine in [z;,4+00). Here n is the outer normal to

ON{(zg, b(xg)),0 < k <1}, o = 0 (see Figure 1.1).
In [2, 3] the function y = b(x) was assumed to be convex or straight. In this study,
we set a rather general assumption on the function y = b(x), that is, there is no
special assumption on the shape of the curve y = b(x) except the requirement on the
total curvature of the curve. New shock may issue from some place away from the
wedge surface; also more complicated boundary interactions may occur (see [3, 5]). To
overcome these difficulties we modify the Glimm scheme to handle the initial-boundary
value problem. In this paper, under suitable conditions, we shall construct the global
weak solution that satisfies (u, v) = (¢eo,0) near the line set {(z,y)|z =0,y < 0} and
solve the problem (1.1) in the following sense as in [7]:

+oo
/ pUP1y + prdry = / Pocloo®1(0, y)dy,
QN{z>0} —00

/ v¢21 - u¢2y =0
QN{z>0}

V1 € C°(R?), o € C°(Q) (see [3, 7, 11]). Here poo = p(goo,0) is given by (1.2).
The remaining parts of the paper are organized in the following way. In section
2 we first rewrite the equations in the equivalent form and prove that these two
systems admit the equivalent entropy conditions. Then by the well-known results
of the conservation laws we parameterize the wave curves, i.e., the shock polar and
epicycloid in the supersonic region according to the entropy conditions. In section 3
we apply the results in section 2 to establish the existence of solutions to a class of
mixed problems and the estimates on the interactions and reflections of waves and the
flows past a corner. In section 4 we first approximate the boundary by a collection
of straight line segments and modify the Glimm scheme in each approximate domain.
In each domain we get the approximate solution and define the Glimm functional
analogous to that used in [12, 13] (see also [4, 10]), which is supplemented by additional
terms needed to take more complicated boundary interactions into account. The
desired decrease of the functional is obtained provided that the top angle and the
total curvature of the boundary are sufficiently small. In section 5 we extend the

(1.3)
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x

Fia. 2.1.

approximate solutions to the whole domain and prove the compactness of approximate
solutions, then obtain the global solution by the convergence of the approximate
solutions. Our main results are also stated in section 5.

2. Entropy condition. First we give some notations that will be used through-
out the paper. As usual, we view the z-direction as the vertical direction and the
y-direction as the horizontal direction and we still use the notation (a,b) to denote
the point whose z-coordinate is a and y-coordinate is b (see Figure 2.1).

We recall some basic results about the system. This system is genuinely nonlinear
and hyperbolic if the z-direction is regarded as the time direction. It is obvious
that the system possesses two distinct characteristics, Ay = “—=S7—7—% W, Ao =

uvtovu 4y —c W and two right eigenvectors r;(u,v) = ej(u,v)(ffj) (j = 1,2) and

A1 < 0 < Ag near the point (¢oo,0). Here e;(u,v) (j = 1,2) are smooth functions near
the point (geo,0) which satisfy

(21) ’I'j . V)\j =1

(j = 1,2) near the point (¢s,0). Moreover we have the following,.
LEMMA 2.1. There hold

(2.2) ej(u,v) >0

(j = 1,2) for any state (u,v) near (¢so,0).
Proof. We prove only the lemma for j = 2.

2
Differentiating the Bernoulli relation 76721 + % = constant with respect to v and

v, we get

(02)u|(qm,0) = *(’Y - 1)‘]005
()vl(gee,0) = 0;

then

_ ('Y B 1)q<>0 _ ('Y + 1)Qoocoo
2000V 0% — A& 2V/(d% — &)?

)\2u|(qm70) =
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and
A2 l(goe,0) =
Thus it follows
ViumAz - (A2, 1)|(g0) > 0.

This implies that e; > 0 near the point (¢oo,0). In the same way we can also prove
that e; > 0 near the point (gso,0). d

Let Rao(ug,vo) and Sa(ug,vg) (or Ri(ug,vo) and Sq(ug,vo), resp.)represent, re-
spectively, the epicycloid and shock polar in the supersonic region with respect to
Ag-characteristic field (or Aj-characteristic field, resp.) passing through (ug,vo), ¢ =

vu? + v? and denote

R;(UO,UO) = {(’LL,’U) S RQ(U07v0)|q S q0 }7
2.3) Sy (ug,vo) = {(u,v) € S2(uo,v0)|q > qo-},
' R (ug,v0) = {(u,v) € Ry(uo,v0)|q > qo.},
S1 (ug,vo) = {(u,v) € S1(uo,v0)|q < qo-}
(see Figure 2.2) and
(24) :Z}(U(),'l)o) :Rj_(’LLO,’Uo)USj_(Uo,’Uo), j = 1,2

The T (ug,vo) (j = 1,2) gives the physically admissible solution with (ug,vo) as the
left state (see [3, 7]). In addition, from the rotation invariance of the equation and
the Hugoniot locus, we have the following lemma.

LEMMA 2.2. There exists a 61 > 0 such that the following holds for all points
(ug,v0) belonging to the neighborhood of (gso,0), Os, ((¢oo,0)):

R;(uo,vo) = {(u,v) € Ra(ug,vo)|u < ug,v > vg.},
(25) S5 (uo,v0) = {(u,v) € Sa(ug,vo)|u > ug,v < vg.},
. R (uo, v0) = {(u,v) € Ry (uo,vo)|u > ug,v > vo.},
Sl_(UQ,Uo) = {(U,U) € Sl(uo,v0)|u < Ug, vV < Vo }
Set
(2.6) v { m = pu,
w="v

and W= ("), U= ("), D={U € R*|u>c.,q< ¢}
LEMMA 2.3. U : D +— U(D) is a smooth diffeomorphism.
Proof. A simple calculation shows that

2—vy
1 -1 -1 1 1 -1
mu—A_Wl—1<’y+ Ci_’y q2> <W+ Cz_’)’-i- W= v2><0
2y 2y 27y 2y 2y

V(u,v) € D. This proves the lemma. 0
Thus the system can be written in the new coordinates as

(2.7) W, + H(W), =0,
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Fic. 2.2. Wave curves in the case ugp = qoo,vo = 0.

where W = ¥(u,v).

Obviously this new system is also genuinely nonlinear and hyperbolic with respect
to the z-direction.

PROPOSITION 2.4. There is a 62 > 0 such that the following assertions hold for
any state (ug,vo) near Uss = (¢oo,0):

R;(Uo,’l)o) ﬂ0§2(Uoo)
= {(uv U) € Rj(u()?UO)‘)‘j(u’ U) > /\j(UO,’Uo)} N Oéz(Uoo)a

(2.8) S} (uo,v0) N Os, (Uso)

= {(u,v) € §;(uo, v0)[A;(u,v) < A;(uo,v0)} N O, (Uso),
j=172.

Proof. Tt suffices to prove the lemma in the case vy = oo, v9 = 0. First we prove
the lemma for S, .

Noticing that Ss is also the shock curve for the new system, we can parametize Sy
by € with LY |._o = 75(W) according to Lax [8], where 7o(W) = V¥ - 73|y _g-1(w);
then the following holds along S2(¢s,0) by Lemma 2.1:

du

E e=0 — _)\2(q007 0)62((1005 O) < 07
dv

& e=0 — 62((]00,0) > 0.

Therefore it follows that near e = 0
u(e) > u(0) = oo,
v(e) <v(0)=0

holds if and only if € < 0 holds.
Also from (2.1) it follows that near e =0

Az (u(e), v(e)) < A2(u(0),v(0)) = A2(¢oo, 0)

holds if and only if € < 0.
This proves the result for S5 (¢oo,0). The general case for S5 follows by the
argument of continuity.
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The result for S| and Riz can be proved in the same way. |

Equation (2.8) implies that the system in (1.1) and the system (2.7) admit the
same entropy condition, that is, they are equivalent in the weak sense. Therefore we
can parameterize these waves easily as follows: for any state W; € ¥(Os(1)(Us)),
where 6(1) = min(é1, 62), let L;(W;) (j = 1,2) be the curves of Lax (see [8]) parame-
terized by €; — ®;(e;, W;) with ®; € C? and

(I)j|e] Wla
(2.9) oD
86? ;=0 :fj(VVl)'
J

Here 7 (W) = VV - rjly—g 1 (w) (4 = 1,2).

By Lemma 2.2 and Proposition 2.4 it’s obvious that L; is constituted by \I/(S;)
and \II(R;F) ( = 1,2), and we call the waves given by T; or ¥(T}) the elementary
waves or j-wave throughout the paper. Moreover, it follows that €; > 0 along \I/(Rj')
while €; < 0 along ¥(S;") (j = 1,2).

Denote
B(ea, €1, W) = Dy(e2, D1 (e1, W))),
(2.10) (62 €1 1l)~ 2.(62 1(61 l))
(I)j:\:[/_ "bj, ]:1,2,
and
(211) (I)(€2a617 (ulavl)) = ©2(€23 v @1(61, \Il(uhvl)));

then we have the following lemma.
LEMMA 2.5. For any pair of states U, = (") and Uy = () close to Uso = (95)
in the supersonic region, the system

W, + H(W), =0,

(2.12) [ Wey>o0,
Wh=0=1 w.y <0

admits the unique admissible solution constituted by two elementary waves. In addi-
tion it owns the representation (u,,v,) = ®(8, a, (ur,v;)) with

D|n—p=0 = (w1, 1),

(2.13) .

% a=#=0 = Tl(ula’ul)v
and

0P
(214) % a=0=0 — TQ(UI,Ul)a

where W = (7).

This lemma can be derived by Lemma 2.2, Proposition 2.4, and the results in the
[8]. It will lead to the estimates given in the next section.

For simplicity, we shall use the notation {U;,U,} = («,3) to denote that U, =
®(0, a, Up) throughout the paper. It is obvious that o > 0 along Rf and 8 > 0 along

Ry while a < 0 along S; and 3 < 0 along S, .
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x
Cs3
% )
Co
Q ?’/
(@
0 - Y

Fia. 3.1.

3. Basic estimates on the nonlinear waves. In this section we shall give the
estimates on the interactions and reflections of waves and the flow past the corners.
First, by the standard result (see [4, 10]), we have the interaction estimates in the
interior as follows.

LEMMA 3.1. IfU;, Uy, and U, are three states near Uy, with {U;,Up}t = a =
(a1, a2), {Un, U} =B, and {U;, U} =, then

(3.1) e = ag + B, + O()A'(a, B).

Here k =1,2 and A'(a, B) = ) |a;]| 55|, where the sum is over all pairs for which the
ith wave from « and the jth wave from 3 are approaching; O(1) depends only on the
system and Uy, .

Let Cy = (ag,br) (k= 1,2,3) with agy1 > ar > 0 (k = 1,2) (see Figure 3.1) and

b3 — by by — b1
w = arctan — arctan ,
as — a9 as — ap
by — by
wo = arctan ,
a2 — a1
_ b1 — by
Q= (@, y)]ar <z <app1,y < ——(r —a) +bi ¢,
Ap4+1 — g
/o o bk+1 — bk
=9 (@ y)|ap <z <agrr,y= ———(r —ar) +bg ¢,
Q41 — Ak

np= (br+1 — br, ar — Qgy1)-
Set

0 if a>0and b2>0,
Ala,b) = { la||b]  otherwise,

and let H be a neighborhood of U, satisfying H C D and is compact.
Consider the following mixed problem:

W+ HW), =0 in Q,
(32) Wlw:az = W27
(u,v) M2 =0 on T,
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where W = ¥ (u,v).

LEMMA 3.2. There exist 63 > 0 and 65 > 0, 64 > 0 with 64 < ming | arctan Aq o|
such that if |Uso — Ug| < 63, |wo| + |w| < 64 with Up- 771\: 0, then there exist a unique
€ € (—85,05) and a constant state Us with {Uy, Uz} = (€,0) such that the mized
problem (3.2) in Qo with the initial data Wo = U(Up) admits a unique admissible
solution W constituted by a 1-wave of which the strength is ¢ and W = U(Us) in
some neighborhood of T%,. Moreover,

(3.3) e =Kiw+ O0(1)|w|?

with K1 > ¢g > 0, where ¢g and the bounds of K1 and O(1) depend only on the system,
Uso, and ming |Aq 2.
Proof. Tt suffices to solve the following equation for the given wy, w, and Uy:

(3.4) ®(0,¢,Up) - (—sin(wo + w), cos(wp +w)) = 0.

Since ®(0,0,Us) - (0,1) = 0 and by Lemma 2.1,

0 .
(3.5) 5% [@(0,€,Up) - (— sin(wo + w), cos(wo + w))] = 71(¢e0,0) - (0,1) >0
for e = w =0, wy = 0, and Uy = U, we can get the unique C?-function € =

€(wo+w, Up) which solves the above equation in some neighborhood of € = w = wy =0
and Uy = Uy by the theorem of implicit function.
Moreover, by assumptions we have

(3.6) ®(0,0,Up) - (—sinwp, coswg) =0

and this implies €(wg, Up) = 0. Thus the result follows by the Taylor formula. |

This lemma deals only with the case of the paralleling flow past the corner with
small turning angle. To take account of more complicated boundary interaction,
including the reflection of waves, we need the following proposition.

PROPOSITION 3.3. There exist 6; > 0 (i = 5,6) and 6§ > 0 with §¢ < ming | arctan Aq o
such that if Uy, Uy, and U, are three states in the supersonic region with |Usx — U, | <
85, |Ui — Uso| < 05, |Upm — Uso| < 85, and |wo| + |w| < 66 and satisfy that {U;, Uy} =
0,a), {Un,Ur} = (7,0), and U,- niz 0, then there exist a unique € € (—8%,06r) and
a constant state Uy with {U;,Us} = (€,0) such that the mized problem (3.2) in g
with the initial data Wo = U(U;) admits a unique admissible solution W constituted
by a 1-wave of which the strength is € and W = ¥ (Us) in some neighborhood of T%.
Moreover,

(37)  e=v+ Ksa+ Kiw+ O1){lally| + lallw| + Aly,w) + |af® + [w]*}

holds with K3 > 0 and K4 > 0 and the bounds of K3, K4, and O(1) depend only on
the system Us, and ming |arctan Aq o|.
Proof. Tt suffices to solve the following equations:

®(0,¢,U;) - (—sin(w + wp), cos(w + wp))
(3.8) =®(0,5,2(0,v,P(a,0,0;))) - (—sin(w + wp), cos(w + wp))
—0

for the given «,y,w, and wy and Uj.
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To find the solution (¢, 3) to the equations, we should carry out the following
three steps.

First, noticing U, - i; = 0, by Lemma 3.2 we can get the unique C2-function
B = B(w+ wo, (0,7, Uy,)) which solves the equation

(3.9 ®(0,8,P(0,v,Up)) - (—sin(w + wp), cos(w + wp)) =0
in the neighborhood of § =wy=w =v=0and U,, = Uy and
(3.10) B =Kiw+O01)|w|?

with K71 > Cy > 0.
Also by Lemma 3.1 we can find the unique C?-function ¢ = €/(3,~,U,,) which
solves the following equation in some neighborhood of ¢ = 8 =~ =0 and U,,, = Uy:

(3.11) 2(0,€,Un) = (0, 8", (0,7, Upn))
with
(3.12) ¢ =0 +~v+O01)AF, 7).

The third step is to solve the following equation:

®(0,¢,U;) - (—sin(w + wp), cos(w + wp))

(3.13) = ®(0,¢’,®(,0,T))) - (— sin(w + wp), cos(w + wo))

for the given €, o, w, wy, and Uj.

In the same way as in the proof of Lemma 3.2 we can also get the unique C2-
function € = e(€e”, o, w + wp, U;) which solves (3.13) in some neighborhood of e = ¢’ =
a=w=wyp=0and U, = Uy.

Throughout the paper we omit the U; in € = €(¢’, a,w + wo, U;). It is obvious
that

(314) 6211+I2+13+I4+6(0,0,WO),
where

I = e(€”, a,w + wpy) — €(€”,0,w + wp) — €(0, v, w + wp) + €(0,0,w + wp),
IQ = 6(6”,0,&) + wo),
I3 = ¢(0,,w + wp) — €(0,0,w 4+ wp) — €(0, ,wp) + €(0,0,wp),

and
I = ¢(0, a0, wp);
then we have by the Taylor formula and Lemma 2.1 that

I = O(1)|e"]|al,
(3.15) I3 = O(1)|w||al,
Iy = Kza + O(1)|a?,

with K3 > 0. Moreover, it follows by uniqueness that
I2 = ella

(3.16) €(0,0,wp) = 0.
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Apq1
Ty
A
| .}
Ap_1
0 - Y
Fia. 4.1.
Hence
(3.17) e=¢" + Kza+ O (|e"||a] + |w||af + |af?).

Let Uy, = ®(,0,U;), € = €”, and f = #'; then by (3.9), (3.11), and (3.13) and

noticing

0
(3.18) a@((),e, Up) - (—sin(w + wp), cos(w + wp)) # 0
for e = w = wp =0 and U; = Uy, we can find the unique € which solves (3.8) in some
neighborhood of e = 8 =wyg =w =7~ =0 and U; = U,, = U, = Uy. In addition, the
desired estimates follow from (3.10), (3.12), and (3.17).
The proof is complete. ]

4. Glimm scheme. In this section we shall use a modified Glimm scheme to
obtain the approximate solution in the approximate domain A, which will be defined.
Without loss of generality we assume that b is smooth and let y, = b(kAzx); we then
choose the points { Ay = (kAz,y,)} {25 in the T = {(z,y)|y = b(x), z > 0} and denote

Ye+1 — Yk Y — Yk—1
Ap) = arctan 2L I arctan 25— IR g >
w(Ay) = arctan AL arctan = >
Y1 — Yo
Ap) = arct ,
w(Ap) = arctan s

T ={(z,y)|kAz < x < (k+ 1)Az,y = b(z, k, Ax)},
and 77y is the outer normal to ',
Qaz = Upso{(z,y)[kAz <z < (k+ 1)Az,y < b(z, k, Az)},

where b(xz, k, Az) = yp + L35 (2 — kAz) (see Figure 4.1).

Let B = {U € D||lU — Ux| < §(2)} C H and Ay satisfy that 847787 =
2sup{|A1,2(2)|, z € B}, where §(2) is a constant specialized to meet the requirement
of propositions and lemmas in sections 2 and 3, m = Supk>o{%}.
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Choose mesh points {(kAZ, akn)}k>0,—co<n<too in R? with
(4.1) agpn = (2n+ 1+ 0k) Ay + ys

and 6y, is randomly chosen in (—1,1). We connect the mesh point (kAx, ak,,) by two
line segments to the two mesh points, ((k — 1)Ax, ax—1,-1) and ((k — 1)Az, ak_1,,)
if 65, < 0, or connect mesh point (kAz,ay ) by two line segments to the two mesh
points ((k — 1)Ax, ax—1,,) and ((k — 1)Az, ag—1,n+1) if 6 > 0.

DEFINITION 4.1. A mesh curve is defined to be an unbounded piecewise linear
and space-like curve which is composed of these segments.

Then each mesh curve I divides the R? into IT part and I~ part, the I~ part
being the one containing {x = 0}. As in [15] we also partially order the mesh curves
by saying I; > I, if every point of the mesh curve I; is on either I5 or contained in
I; , and call J an immediate successor to I if J > I and every mesh point of J except
one is on I.

Now we can define the difference scheme in Q2a,, that is, define the global approx-
imate solution U = U(z,y) in Qa,. This can be done by carrying out the following
steps inductively.

Assume that the approximate solution U has been constructed for 0 < z < kAx
with Uly—o = U and U(z,y) = Uj(z,y) for (z,y) € {(j —1)Az <z < jAz} N Qa,
(0 < j < k—1), we will define the approximate solution U = U, = ¥~1(W}) in
{kAz <z < (k+ 1)Ax} by solving the following problems.

First we have to solve the following Riemann problem:

{ (Wk)e + H(Wi)y =0,

4.2
( ) Wk|z:kAz = W/S

in each rhombus T}, ,, whose vertices are (kAx, (2n—1)Ay+yx) (kAz, (2n+1)Ay+yi),
((k+ DAz, (2n — DAY + yrt1), ((k+ 1)Az, (2n + 1)Ay + yr41). Here n < —1,
W0 = B(U?) and

U(y) = Up—1(kAz—, ary), v € (y + 2nAy, yi, +2(n + 1)Ay).

If the problem (4.2) is solvable, define U= UL (Wy) in Ty, (n < —1).
Set

(4.3) Upn = Up_1 (kAz—,ay,,), n<—1;

then by Lemma 3.1 we have that if W € ¥(B) for n < —1, the problem (4.2) admits
a unique admissible solution and there exist uniquely € ,, 1 and € 5, 2 such that

(4.4) Uk.n = ®(€k,n,2: €n1, Ugn—1)-

Second, to define U in rhombus Ty o whose vertices are ((k + 1)Az, yrt1), ((k +
DAz, Ay +yr+1), (KAz, Ay+yg), and (kAx, yi), we solve the following mixed prob-
lem:

(Wi)z + HWy)y =0,
(4.5) Wilo=kaz = Wy,

(ug,vg) ng |r, =0

in rhombus T}, . If this problem is solvable, then define U= UL (Wy).
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By Lemma 3.2, if W € ¥(B) and the turning angle is small enough, this problem
admits a unique admissible solution; moreover, we can find out a unique €z ,; and a
constant state Uy o such that

(4.6) Uk,o = ©(0,¢x,0,1,Ur,—1)

and

(4.7) Uk70- ng |Fk = 0,

(4.8) Wi =¥ (Ug,) in some neighborhood of T.

By these solutions we can get the global approximate solution defined in Qa,. From
the discussion above we have the following lemma.
LEMMA 4.2. For each k > 0 there exists an n(k) < 0 such that

(4.9) Ukn =Uss VY < n(k).

LEmma 4.3. If {U,U,} = (o, 8), U, U, € B, then
(4.10) Ui = Ur| < s(la| +18]).

Here 5 = max{| Z®(8,0,U)], | & (8,0, U)||U € A, || +|a| < &}.

Throughout the paper we define Uy (kAx, ay ) = Uy, if n > 0 for simplification.
Then it is obvious that €z ,,1 = €xn,2 =0 for n > 0 and k > 0.

Next we can define the Glimm functional for the approximate solution in Qa.

Denote by Uaz ¢ the approximate solution constructed above and Wag.0 = ¥(Uagz,0),
where 0 = {6y,01,...,0k,...}. For any mesh curve J, let Q; be the set of Ay that
lies in JT, that is,

Qs = {Ax|Ax € T N0z, A = (kAz, yi) };

denote by «; (or §; etc.) the jth wave from « (or 8 etc.) and by a}j (or ﬂj") the
strength of a; (5, resp.) wave crossing J (j = 1, 2), and denote Ko = supg{ K1, K2, K3, K4}
and K = 8Kj.

DEFINITION 4.4.

Li(J) =) flofl, a=(a1,a2),0; crosses J}, j=1,2,
Lo(J) =) {lw(4)], Aeqy}
Q2() =Y {A(ad,B)), 2,0 cross J and o lies to the left of 8},
Q1(J) =Y {A(a],B), both of ar, By cross J and a lies to the left of 8},
Q'(J) =) {laglIB{|, B cross Ja lies to the left of B},

"(7) = {A(ef, ), .8 cross J,a lies to the left of B}

+Z{A(Q1J,Oé2J), a crosses J},
Qo(J) = |L2(J)?
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and
= {lagl[w(A)], a3 crosses J, A€ Q)
= L»(J)Lo(J),
(J) =) {A(af,w(A)), a crosses J, A€ Q,},
o(J) =Y {lw(4) |2 A€t
'(J) =) {Aw(A),w(d), AA € A#A}

DEFINITION 4.5.

Q(J) = K?Q2(J) + 2KQ'(J) + KQ"(J) + Q1(J) + K*Qo(J),

D(J) = K?Dy(J) + KDy (J) + KDo(J) + K*D'(J),
L(J) = KLy(J) + L1(J) + K Lo(J),
F(J) = L(J) + {Q(J) + D(J)}.

Let 6(3) = min(é4,06) and 6(4) = min(=5:~, 3, 3 ); then we have the following
lemma.

THEOREM 4.6. Let I and J be two mesh curves satisfying J > I, and suppose
that |w(Ag)| + Lo(z = 0) < 6(3) and I is contained in the domain of definition of
Uagz,o with Uagglr € B. There exist constants ¢ > 0 and 67 > 0 independent of I and
J such that if L(I) < 67 then J is also contained in the domain of definition of Ung.g
with UAI,9|J € B and

(4.11) F(J) < F(I).

Proof. We first assume J is an immediate successor to I and assume that J and I
differ by a single diamond that either lies entirely in the interior of Qa, or intersects
the boundary of Qa.

Case 1. If I and J differ by a single diamond that lies entirely in Qa;, then
Qr = Q. The proof can be carried out in the same way as in [13, 15] by Lemma 3.1.
Namely, we can find suitable constants ¢’ € (0,6(4)) and ¢’ > 0 independent of I and
J such that if ¢ > ¢ and L(I) < min(¢’, m% then

F(J) < F(I),
F(J) < L(I) + o(K? + K + 1)L(I)* < 2L(I).

Thus L(J) < 6(2 and this implies Unz ¢|; € B by Lemmas 4.2 and 4.3.

Case 2. If I and J differ by a single diamond A that intersects the boundary of
QAaq, then Q; and Q; differ by a single angle w, that is, Q; = Q; U {w}.

Let I =1oUI' and J = Iy U J" with J' = {€1}; here ¢; is a 1-wave of which the
strength crossing J' is €1. Denote T2 (or Iy, resp.) the set of 2-waves (or 1-waves,
resp.) crossing /. The notations Iy jy, Iéj), Jjy, and J(’j) (j = 1,2) are defined in the
same way. In the next notation, without confusion, we shall use a; € I, (;) to denote
one j-wave from « of which the strength crossing I, is «;.

Define

Ql(IO,(l)a 61) = Z{A(ﬁla 61)751 € IO,(l)}7
Q//(IO,(1)7 042) = Z{A(ﬁla a2)761 € IO,(I)}a
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and
D1 (Iy,1),w Z{A Bi,w), B1 € To,1y}-

Now we can carry out the proof. This case is divided into three subcases, for which
only the proofs are given.
Subcase (i): If Iy = {n}, I}y) = {az}, a2 lies to the left of 71, then we have

Ly(J) = La(I) — |zl
Lo(J) = Lo(I) — |wl,
Q2(J) < Q2(I),
Q”(J) = ”(IO) ( ) QN(IO (1), & )7
(4.12) Qo(J) = Qo(I) — |012|2 — 2|ag|La (o),
Dy (J) = Da(I) — |az|Lo(I) — |w[L2(o),
Dy(J) = Do(I) = |w]?,
D'()=D'(I)- > Aw,u);
W e,

moreover, by Proposition 3.3,
way PO S B F Kool £ K
' O(W){lazlln| + lazllw| + Aly, w) + [zl + w]*},
Q1(J) = Q1(1o) + Q1(Io,1), €1)
(4.14) <Q1(I) + KQ"(Ip, 1), a2) + KD1(Ip (1), w)

+ O()Li(Lo){lazllyi] + laz|lw] + A(yi,w) + |azf® + |w]?},

Q'(J) = Q' (Io) + Q' (Io,(2), €1)
(4.15) < Q'(I) — |az|lm| + Kolaz|La(Io) + Kolw|L2(1o)
+ O(1) La(Lo){|az|Im] + [azllw| + A(y1,w) + [azf? + |w[*},
and
Di(J) < Di(1) + Klaz|Lo(I) — Klazl|w| — D1 (Lo, w)
(4.16) —Alyw) + K Y Adw,w)

+ O(l)LO(J){\agllevf]IJr Jallw] + Ay, w) + Jazf® + [w]?}.
Thus by (4.12), (4.13), and Definition 4.5 we have the estimate of the linear part,
(4.17) L < )
+ O K (K + 1){|az|ln| + laollw] + Ay, w) + |azf* + |w]*},

and we can get the following estimates of quadratic terms by (4.12), (4.14), (4.15),
(4.16), and Definition 4.5:
Q(J) < Q) = 2K |mllaz| = K?|asf?
(4.18) + 2K0K|w|L2(Io) + KD (IO,(I)a w)
+ O LI){Jazllyi] + lozallw] + Aly1,w) + loaf* + |w]*}
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and

D(J) < D(I) = K?|as|w| — KA(y1,w)
(4.19) — K?|w|Ly(Iy) — K|w|* — KD1 (I 1), w)
+ O()L(I){|az|lm] + |oz||w] + A(y1,w) + |az|* + Jw|*};

then it follows that

F(J) < F(I) + (O(1)L(I)e + O(1) — (min(K2, K))c)

(4.20)
Aozl ]+ lazllw] + Ay, w) + ezl + |w[*}.

Thus we can choose suitable constants ¢ € (0,6(4)) and ¢”” > 0 independent of I and

J such that if ¢ > ¢" and L(I) < min(8”, m), then

F(J)
F(J)

(1),
L(I) + ¢(K?* + K+ 1)L(I)? < 2L(I)

INIA

and the second inequality implies Uagz g|; € B. This proves subcase (i). There are
still two more subcases.

Subcase (ii): If no wave enters A, then the same result follows by Lemma 3.2.

Subcase (iii): If there is only a 1-wave entering A, the result can be proved in the
same way as above by Lemma 3.2 and Proposition 3.3.

Therefore we get the desired result for the case that J is an immediate successor
to I. Thus, for the general case, we can pass from I to J by immediate successors,
where at each stage F' are monotonic nonincreasing and L < min(¢’, 6", m)
for ¢ > max(c’,¢”) and where Ua, ¢ can be defined and U, € B. This proves the
desired result. O

Let

w(0) = arctan(b'(0)),

w(xy) = arctan(b'(zx+)) — arctan(b’ (zx—)),

and
B b”(l‘) .
O T

then as a corollary of Theorem 4.6 we have the following theorem.
THEOREM 4.7. There exists a &, > 0 such that if

l oh
W)+ </ |7(2)|dz + Iw(xk)l> < b,
k=1 Trk—1

then there exists a constant 6 > 0 depending on the function b(x) and &) such that
if 0 < Az < &, then Uagp can be defined in Qa, and Theorem 4.6 holds. In
addition \/"*_(Uag,0(kAx—,-)) < 3s8 for any k > 0. Here the constant s is given in

Lemma 4.3 and \/Z(w) denotes the total variation of w on [a,b].
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5. Convergence of the approximate solution. By (4.8) and (4.9) we can
extend Uag. ¢ by the constant Uy o continuously across the boundary to the whole
strip {kAz < z < (k + 1)Az} for every k > 0.

Let the line {z = a} intersect Ug>oly = U{Aj_1 A, k > 1} at the point (a, p5®)
for a > 0, ynk = (2n + 1)Ax + yy, then we have the following lemma.

LEMMA 5.1. The inequality

0
(5.1) / Uneo@+ hy +p2ts) = Uneol,y + pe)ldy < clh]
holds for any h > 0 and x > 0, where the constant c is independent of Ax, 0, and h.

Proof. First by the solution to Riemann problem given in [8], if kAz < z <
x+h < (k+1)Az and n < —1, we can get

Yn+1,k
/ Unao(@ + hoy + p25,) — Uawo(@,y -+ p2%)|dy

Yn,k

(5.2)

Yn+1,k
<" |\ (Uazo((k+1)Az—,))| |h];

Yn,k

moreover, by the solution to the mixed problem given in Proposition 3.3,

Yk
/)\MMMI+my+pﬁM—lhnﬂ%y+p?N%
Yo,k

(5.3) Yk
<" |\ Uaro((k+1)Az—,-))| |Al.

Yo,k

Here ¢’ is a universal constant independent of Az, 0, and h.
After doing the summation over (5.2) and (5.3), we obtain the estimate by The-
orem 4.7.

The general case can be derived by summation over the estimates in each semistrip
of {kAz <z < (k+1)Az} and the CFL condition. The proof is complete. 0O
LEMMA 5.2. If w € BV(RY), then

b +oo
(5.4) / ot + ) — w(b)|dt < 6 [\/(w)+ w|Lw] Ihl.

Proof. Tt suffices to prove the lemma for h > 0. Let g(t) = \/*

" ool

w) — w(t) and
fit) = \/t_oo(w); then g(t) and f(t) are monotonically nondecreasing. Thus we have

b b b
/ ot + h) — w(t)|dt < / (F(E+h) + gt + h))dt — / (F() + g(t))dt
a+h b+h
- (— / + / ><f<t>+g<t>>dt.
This implies (5.4). d

LEMMA 5.3. There holds |p2¥, — p3*| < c|h| for any a > 0 and h > 0. Here
¢ = sup{[V/(z+)||z = 0}.
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This result can be derived by direct caculation.
By these lemmas and Lemma 4.2 and Theorem 4.7 we can get the following.
PROPOSITION 5.4. If |h| 4+ |I| <1, D C Q is compact, then

(5.5) //  |Uneo(@ + hyy +1) — Ussolz,y)ldedy < c(|h] + 1)
DNQAL
with the constant ¢ independent of Ax, 0, h, and [.
Set
+oo .0
(5.6) 10.82.0)= Y [ 6kday+ ) - Usnllomsasdy
k=1" >

with ¢ = (¢1,¢2) € C°(R?, R?). Carrying out the same step as in Smoller [15], we
have the following proposition.
PROPOSITION 5.5. There is a null set N C [[[°5[~1,1] and a sequence Ax;

i——400
0, and a U € L}, () N L>®() with Uly<o = (oo, 0) such that J(0, Az;, $) PR 0
and Upg,; .0 — N U strongly in L}, (N {z > 0}) for any 6 € ([[}25[—1,1])\N

and ¢1,¢2 € CSO(RQ)

Now we can establish the global existence.

THEOREM 5.6. Under the assumptions (Al), (A2), and (A3), there exists a
8o > 0 such that if |w(0)| + 22:1”5:,1 |7(z)|dz + |w(zk)|) < bo, the problem (1.1)
admits a global weak solution in €.

Proof. Choose 6 > 0 and 6; > 0 such that Theorem 4.7 holds and let W = ¥(U)
and Uagz,o = (uaz,0,Vaz,0) be the approximate solution constructed above.
For any ¢o € C°(1), there exists a 6)" € (0,8() such that if Az < 6, then

(5.7) suppga N O0a, = 0.
So doing the calculation in each rhombus for ¢; € C2°(R?) and ¢ € C°() and
Az < 6" we have

0
(58) WA:E,@ . (b:z: + H(WAm,9)¢y + J(Axa 97 (b) = / poo(JO0¢1 (Ou y)dy,

QAz — 0o

where ¢ = (¢1, ¢2).

Since |uag,o| < M and |vage| < M for some M by Theorem 4.7 and Lemma 4.2
and

mes(suppg1 N {(2\2az) U (Qaz\2)} N {z > 0}) ——0,

Axr—0
we have
/ (WA$,9¢I + H(WA$,9)¢y) - / (WAw,Q(bw + H(WAw79)¢y)
a* Qax
(5.9)
(a2 \QHU(QT\QAz) 2—00

where QF = QN {z > 0}.
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Moreover, according to Propositions 5.4 and 5.5, we can find sequences Ax; —
0, & € N, and U such that Uay,,0 — U strongly in LlloC as Azx; — 0 and
J(0, Az, p) — " 0. Then from (5.8), (5.9), and the discussion in section 4 it

follows that U is a weak solution to (1.1) in €.

The proof is complete. ]

Remark 5.7. In the same way we can also construct a global solution Uy in €.
Here Q. denote the subdomain of {y > 0} that is outside the right half of the wedge.
Denote

_J Us(zy), (z,y) € Q4
U{ Ut(fﬂ,y), (ﬂc,y)eﬂ,+

and from the structure of the solution we know that U is the desired solution.

Acknowledgment. The author thanks referees for helpful and encouraging com-
ments.
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WAVELETS ON MANIFOLDS I: CONSTRUCTION AND DOMAIN
DECOMPOSITION*

WOLFGANG DAHMENT AND REINHOLD SCHNEIDER?!

Abstract. The potential of wavelets as a discretization tool for the numerical treatment of
operator equations hinges on the validity of norm equivalences for Besov or Sobolev spaces in terms
of weighted sequence norms of wavelet expansion coefficients and on certain cancellation properties.
These features are crucial for the construction of optimal preconditioners, for matrix compression
based on sparse representations of functions and operators as well as for the design and analysis
of adaptive solvers. However, for realistic domain geometries the relevant properties of wavelet
bases could so far only be realized to a limited extent. This paper is concerned with concepts that
aim at expanding the applicability of wavelet schemes in this sense. The central issue is to construct
wavelet bases with the desired properties on manifolds which can be represented as the disjoint union
of smooth parametric images of the standard cube. The approach considered here is conceptually
different though from others working in a similar setting. The present construction of wavelets is
closely intertwined with a suitable characterization of function spaces over such a manifold in terms of
product spaces, where each factor is a corresponding local function space subject to certain boundary
conditions. Wavelet bases for each factor can be obtained as parametric liftings from bases on the
standard cube satisfying appropriate boundary conditions. The use of such bases for the discretization
of operator equations leads in a natural way to a conceptually new domain decomposition method.
It is shown to exhibit the same favorable convergence properties for a wide range of elliptic operator
equations covering, in particular, also operators of nonpositive order. In this paper we address all
three issues, namely, the characterization of function spaces which is intimately intertwined with the
construction of the wavelets, their relevance with regard to matrix compression and preconditioning
as well as the domain decomposition aspect.

Key words. topological isomorphisms, Sobolev spaces on manifolds, norm equivalences, comple-
mentary boundary conditions, biorthogonal wavelet bases, domain decomposition, boundary integral
equations

AMS subject classifications. 46B03, 46E35, 46B15, 65F10, 65N38, 65N55, 65F10, 65F35,
65R20

PII. S0036141098333451

1. Introduction.

1.1. Motivation and perspectives. Thus far wavelet concepts have unfolded
their full computational efficiency mainly when dealing with problems defined on the
full Euclidean space or the torus. This is to a great extent due to the fact that in this
setting wavelets as discretization tools exhibit some remarkable features.

(I) Wavelet expansions induce isomorphisms between function and sequence spaces
[39], that is, certain Sobolev or Besov norms of functions are equivalent to
weighted sequence morms for the coefficients in their wavelet expansions.
Specifically, denoting for s € R by H® a scale of Sobolev spaces (possibly
incorporating homogeneous boundary conditions), such norm equivalences
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have the form

(111 e{2%dn}iklles <N diwtbkllie < CI{27°dj}iklles
3.k
for some range of s.

(IT) The wavelets have cancellation properties that are usually expressed in terms

of wanishing polynomial moments.

(I) has immediate important consequences for preconditioning systems stemming
from elliptic operator equations [19, 17, 32] of positive or even nonnegative order
depending on the range of the norm equivalences. In particular, when dealing with
operators of negative order, it is important to realize the validity of such norm equiv-
alences as well as for negative Sobolev indices s < 0 in (1.1.1) in which case the space
H? is understood to be the dual of H~®. This latter case has to be treated with
some care which we will briefly explain now because this will identify more specific
requirements on the wavelet bases.

On the one hand, recall that when s < 0, (1.1.1) is proved by establishing an
analogous relation for H~° and a dual basis {'(Lj,k}j,lv More precisely, suppose that
the ;1 and z/;j,k are biorthogonal with respect to some Ly inner product (-, -) and that
9=,k djkjx is an element of L. Then for (1.1.1) to hold, g has to be identified
with a functional in H*. In principle, this can be done through any Lo inner product
(,) by g(v) := (g, v) provided that the inner products (-, -) and (-, -) are s-equivalent.
By this we mean that the Riesz map R : Ly — Lo defined by (-,-) = (R-,-) not only is
an automorphism on Ly but also extends to one on H®, i.e., |g||g- and ||Rg| g are
equivalent for g € Lo.

On the other hand, the relevance of (1.1.1) for preconditioning stiffness matrices
of an operator £ with respect to the wavelet basis hinges on its H®-ellipticity. Specif-
ically, when (Lv,v) is equivalent to ||v]|%. for some L inner product (-,-), this in
turn determines how to embed Lo into H® for s < 0, namely, (up to s-equivalence)
through the particular inner product (-, -) appearing in the variational formulation of
the operator equation [16, 19]. In summary, in order to draw conclusions on precon-
ditioning, it is therefore important to construct biorthogonal wavelet bases not with
respect to any convenient inner product but to one that is compatible with the under-
lying variational problem. Since this involves usually the standard Lo inner product,
this is the primary choice considered in this paper.

(IT) entails that functions which are smooth except on lower dimensional mani-
folds have nearly sparse wavelet representations. By this we mean that only relatively
few coefficients are needed to approximate such a function with desired accuracy.
Moreover, applying this principle to the (singular) kernels of a wide class of integral
or pseudodifferential operators leads to nearly sparse matrix representations of such
operators [5]. This provides the basis for matrix compression schemes whose anal-
ysis relies again on (I) and (II). The norm equivalences allow one to transform the
continuous problem into a discrete problem that is well posed in the Euclidean met-
ric. In fact, one can show that given the right interplay between the range of norm
equivalences and the order of vanishing moments one can, in principle, design efficient
solvers which produce approximate solutions with asymptotically optimal accuracy at
the expense of computational and storage cost that stays proportional to the problem
size [19, 20, 23, 45].

Again the combination of (I) and (II) (respectively, the consequences with regard
to matrix compression) also provides the basis for a rigorous analysis of adaptive
schemes for elliptic equations. In fact, the analysis of refinement strategies based on a
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posteriori error estimates for residuals exploit both (I) and (II) [13, 11]. In particular,
convergence in the energy norm can be proved without a priori assumptions on the
solution like those commonly needed in a finite element context [6].

Moreover, nonlinear approximation is an important theoretical concept related to
adaptive approximation. The accuracy that can be achieved by so-called best N-term
approximation can be characterized in terms of the membership of the approximand
to a certain Besov space [25]. It is again important to characterize such spaces in
terms of discrete norm equivalences.

These facts have motivated various attempts to exploit this potential for the
numerical treatment of operator equations. However, the above-mentioned strong
implications of wavelet discretizations are valid only under the assumption that (I)
and (IT) hold with appropriate choices of parameters. Unfortunately, as indicated
before, so far these properties are conveniently realized within the desired range only
when the underlying domain is the full Euclidean space or, via periodization, the
torus. For more general domain geometries, the construction of appropriate wavelet
bases may become prohibitively difficult and expensive.

1.2. Construction principles. Several strategies for dealing with complex do-
main geometries have been explored in the literature; see [16] for a brief survey and
further references. One possible approach is offered by embedding techniques. For
instance, one can extend the problem to some larger simple domain and enforce the
actual boundary conditions by appending them with the aid of Langrange multipliers
[36] or correct them by solving a boundary integral equation [3]. However, in both
cases a multiresolution setting on the boundary, that is, on a closed manifold, would
be highly desirable. This in turn cannot be treated by an embedding strategy.

However, the results in [10, 18] indicate that at least for the interval, and hence
via tensor products for the unit n-cube, wavelet bases with all the required properties
are within reach retaining nearly the full efficiency of wavelet discretizations in the
classical setting. It is then fairly straightforward to go one step further. Suppose
that Q = k(0), where O := (0,1)" and & is a smooth regular parametric mapping.
Wavelet bases on O can then easily be lifted to bases on (2 retaining the main driving
mechanisms (I) and (1) (see, e.g., [21]). This in turn suggests for us to next consider
domains that are disjoint unions of smooth parametric images of the standard n-cube
O which will be the setting to be dealt with in this paper.

In fact, in many cases the domain on which the operator equation is defined
can be naturally decomposed into a union of simpler domains. For instance, when
the domain is a closed surface, on which a boundary integral equation is defined,
standard CAD packages provide (approximate) representations of such surfaces as
a disjoint union of parametric images of a standard parameter domain such as the
unit square. The individual parametric patches are then smoothly joined up to a
certain degree of regularity. This means that there exist local reparametrizations for
neighboring patches so that the corresponding piecewise defined mapping has a certain
number of continuous derivatives; see section 2.1. But this paradigm does not apply
only to closed surfaces but also to bounded domains (with boundary) in Euclidean
space. This is essentially the same point of view as taken in connection with domain
decomposition methods. Thus a suitable mathematical framework covering all these
cases is to view the domain as a (smooth or at least piecewise smooth) manifold T’
represented as the union of the disjoint images of some parameter domain. In many
cases such as the closed surfaces arising in CAD or domains in CFD the parameter
domain can be chosen to be a cube.
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1.3. Previous approaches and main obstructions. In summary, as pointed
out above, the construction of wavelets on manifolds in the above sense has to be
intimately connected with the topology of function spaces such as Sobolev and Besov
spaces defined on these manifolds. While it is known how to construct suitable bases
on each individual patch the problem remains to form from such individual compo-
nents bases on the global manifold which still satisfy (I) and (II). For Sobolev spaces
of moderate regularity indices there is no problem. In fact, it is well known that

N
(1.3.1) HT) < [[H T), se€(-1/2,1/2).

Unfortunately, this is no longer true for |s| > 1/2. Thus beforehand it is not so
clear how to deal with the above task. A natural first idea is to construct a global
basis by somehow stitching wavelets defined on the individual patches together so
as to realize a certain degree of global smoothness. This idea has been pursued
first for special cases in [34, 35] and later in greater generality and in larger range
concerning (I) in [21]; see also [7, 12] for slightly different subsequent approaches.
However, this concept turns out to have principal limitations. First it requires a
global parametric representation of the manifold because the wavelets living on more
than one parametric patch tie the parametrizations of corresponding adjacent patches
together and prohibit local reparametrizations. Hence, aside from expected enormous
technical difficulties, a global regularity of a piecewise defined parametrization of
higher degree than continuity can only be realized for domains that are topologically
equivalent to domains in Euclidean space. Second, in all the above-mentioned cases,
pairs of biorthogonal wavelet bases are constructed where biorthogonality is realized
with respect to a modified Lo-inner product which generally involves discontinuous
weight functions. Therefore the corresponding Riesz map relating the modified inner
product to the standard one (which is simply multiplication by the weight function
and hence symmetric) does not take H?® into H® for s > 1/2 and, therefore, by
duality, neither for s < —1/2. Hence, on account of the above discussion of (I),
whenever ellipticity of the operator is based on using the standard inner product
in the variational formulation of the operator equation, relations like (1.1.1) can in
this setting be exploited only for preconditioning when s > —1/2 which excludes, for
instance, the single layer potential operator.

For a restricted class of manifolds including the important case of piecewise affine
surfaces with triangular facets, the finite element based wavelets constructed in [24]
are indeed biorthogonal bases with respect to the canonical Ls-inner product. This
covers the range |s| < 1, respectively, |s| < 3/2 for domains in Euclidean space with
regard to (I). Moreover, in principle, cancellation properties of any desired order can
be realized in this setting, however, at the expense of having explicit local dual bases
available.

1.4. Main objectives. The objective of this paper is the construction of biorthog-

onal wavelet bases with the following properties:

(i) Biorthogonality is realized with respect to some given Lo-inner product which
in absence of further information will be the canonical one. Both primal and
dual wavelets have compact support whose size scales in the usual way.

(ii) The construction applies to manifolds of essentially arbitrary topology.

(iii) Properties (I) and (II) can be realized for any range permitted by the regu-
larity of the manifold. In particular, (II) holds in a patchwise sense.
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Our approach is conceptually different from all the other above mentioned ones.
The construction of wavelets will be intimately intertwined with a suitable character-
ization of function spaces on manifolds. One noteworthy consequence is that a global
parametric representation of the manifold is never needed so that topology dependent
regularity constraints do not arise. We will briefly comment now on these issues.

The basic difficulty is that function spaces on manifolds are usually defined in
terms of open coverings and associated charts [1], not in terms of partitions of the
manifold. However, in principle, characterizations of Sobolev and Besov spaces on
compact C'*°-manifolds I' (with or without boundary) of the latter sort have been
established in [9]. These results provide the main foundation for the present investi-
gation. The key there is to establish topological isomorphisms

N
(1.4.1) T HYT) — [[ &2y

between the global function space on I' and a product space whose components H*(I';)T
are corresponding local function spaces defined on the (smooth) patches I'; but subject
to certain boundary conditions. Moreover, in [9] unconditional bases for the individual
component spaces were constructed which, with the aid of the previously mentioned
isomorphism, lead to discrete norms for the global space. It is important to note that
the range of s for which (1.4.1) holds is limited only by the regularity of the manifold.

In full recognition of the fundamental importance of the results in [9] one should
note though that the main emphasis has been the existence of unconditional bases
for function spaces on compact C°°-manifolds. The existence and structure of the
isomorphisms as well as the construction of bases is embedded in a rather involved
development. For instance, due to lack of locality and concrete transformation devices
which are typical and essential for wavelet schemes, the bases constructed in [9] as
well as several constructive ingredients do not yet seem to be practically feasible.

Therefore we will take up the basic concept from [9] here again. Trying first
to isolate the relevant ingredients from [9], we realized that, on the one hand, the
exposition would be hardly accessible without a complete understanding of [9] and, on
the other hand, several crucial deviations from [9] that are necessary from a practical
point of view, would not be well founded. Of course, in the above mentioned context
one has to deal with less smooth manifolds covering the case of piecewise smooth but
globally Lipschitz manifolds.

Thus a first objective of this paper is to rederive topological isomorphisms of the
form (1.4.1) in a way that clearly isolates the essential ingredients in a possibly con-
structive fashion in order to facilitate their adaptation to the computational needs of
the concrete problem at hand. A necessary essential prerequisite turns out to be the
clear identification of conditions solely imposed on certain extension operators so that
the rest becomes completely constructive offering clear strategies for further problem
dependent modifications. The construction of scale-dependent completely localized ex-
tensions based on suitable local biorthogonal wavelet bases for the parameter domain
is one essential distinction of the present approach from the treatment of the desired
topological isomorphisms in [9].

The second objective is to reveal the implications of these concepts with regard to
the numerical treatment of operator equations. Again appropriate pairs of biorthogo-
nal wavelet bases on the parameter domain play a pivotal role. Together with (1.4.1)
they give rise to wavelet bases on the manifold which have optimal localization prop-
erties and satisfy requirements (I) and (II) above for any desired range of regularity
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(permitted by the manifold) and any desired order of cancellation properties. The
main consequences for issues like preconditioning and matrix compression will be in-
dicated along with some computational aspects, especially in the context of boundary
integral equations. An important point is to reinterpret (1.4.1) as a domain decompo-
sition method which appears to differ from those studied in the literature so far and
whose convergence properties based on the preceding analysis is now well understood
also for operators with global Schwartz kernel.

1.5. Organization of material. Section 2 is devoted to the construction of
the isomorphisms 7' from (1.4.1) which is based on certain projections P; onto the
component spaces. In contrast to [9] we begin with a concrete recursive definition of
these projections based on certain extension operators from the patches I'; to certain
neighborhoods. It will be seen that the topological properties of T' are completely
determined by the topological properties of these extensions and their adjoints.

In section 3 we construct wavelet bases on the manifold which satisfy (I) and (II)
for any desired range of regularity permitted by the manifold. We know from [19] that
the efficient treatment of boundary integral equations by wavelet schemes requires the
option of choosing the order of vanishing moments higher than the order of accuracy
of the trial spaces. Therefore we employ the concept of biorthogonal bases rather than
orthonormal ones. On account of (1.4.1), the construction of wavelets on the manifold
reduces to constructing wavelet bases for the individual component spaces H*®(T;)!.
Due to the smoothness of the parametric mappings onto each patch I'; this can easily
be achieved by lifting corresponding wavelet bases defined on the unit cube O. At
this point we can resort to the results in [22], where exactly those wavelet bases with
the right complementary boundary conditions on the primal and dual side have been
constructed.

Recall that aside from these bases for the component spaces the second ingredient,
which the practical feasibility of the approach is ultimately based upon, are suitable
extension operators. Therefore special attention will be paid to the realization of
appropriate extension operators. Deviating from the developments in [9] we show in
section 4 how the multiscale bases on O can be used to construct scale-dependent
extension operators that will be seen to significantly improve the efficiency of wavelet
schemes for operator equations.

The discretization of operator equations is briefly addressed in section 5. Roughly
speaking, (1.4.1) allows one to reformulate a given linear operator equation on I as an
N x N system of operator equations on the product space. Moreover, when the original
operator is self-adjoint and positive definite, the system can be solved iteratively in
the spirit of Schwarz iterations. In fact, the convergence rate can then be shown
to be independent of the discretizations in the individual product spaces provided
appropriate wavelet bases are employed. This framework covers differential as well
as integral operators. As far as we know this extends the present state of the art for
domain decomposition in connection with integral operators significantly. Moreover,
due to the validity of (I) and (II), the understanding of adaptive techniques [13, 11]
can be fully exploited in this setting. The formulation as a Schwarz iteration has
another important practical consequence. For instance, when the operator under
consideration only has a global Schwartz kernel, one can choose the extensions in
a way that for actual computations the wavelets on I' never have to be determined
explicitly. All computations refer to problems defined on O and thus involve wavelet
bases defined on O. Moreover, parallel techniques suggest themselves in a natural
way.
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Parametric surface patch :

Fi1G. 1. Local parametrization.

2. Function spaces on manifolds.

2.1. Piecewise parametric representations of manifolds. In practical ap-
plications, surfaces or manifolds are usually parametrically piecewise defined. More
precisely, denoting by

U= (Oa l)na

the standard parameter domain, we will assume that
N

(2.1.1) Ii=JTi, Ti=ri(0), i=1,...,N,
i=1

where
L,NL; =0, i#y,

and the x; : R" — R"/, n < n’ are smooth regular parametrizations; see Figure 1.
In particular, this means that the induced Lebesgue measures |0k, (x)|dz = dp(ki(z))
satisfy

(2.1.2) a1 <|0ki(z)| <eo, ze€O

for some positive finite constants c1,co. In most practical situations the regularity
of the individual parametric mappings exceeds the global regularity of the manifold.
In all currently available surface modeling schemes the k; are polynomial or rational
mappings of low degree; see, e.g., [31]. The partition of I" into the patches T'; is always
supposed to be conforming. That is, I'; N T, is either empty or the full parametric
image of some lower dimensional face of O under k; and x;; see Figure 2.

Moreover we will always assume that T' is (globally) C™?! for some m € Ny,
No :={0,1,2,...}. Thus I' coincides locally with the graph of an m times differen-
tiable function with Lipschitz continuous mth order derivatives. It is important to
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FiG. 2. Domain with boundary conditions.

note that in contrast to [12, 7, 21] the individual parmetrizations &, are fairly inde-
pendent of each other. In fact, the factors in the product space on the right-hand side
of (1.4.1) are invariant under regular reparametrizations of the patches I';. There-
fore each mapping k; should rather be viewed as a representative of the equivalence
class of all parametrizations of I'; which are related to k; through a C"™!-regular
reparametrization. The freedom of choosing suitable local reparametrizations will be
essential for overcoming topological constraints. Only later in section 4.1 one way
of realizing certain extension operators will require a mild local interrelation of the
parametrizations of neighboring patches. Roughly speaking, what matters then is the
ability of forming for every I'; through suitable reparametrizations a piecewise defined
C™!-homeomorhic mapping from a neighborhood of O in R™ onto a neighborhood of
T';; see section 4.1 for more details.

One should also note, however, that the above assumptions are to provide at this
point primarily a conceptually convenient basis for the following theoretical develop-
ments. In typical practical situations I' is usually not given in the above way but one
rather has to construct (or approximate) I' by properly stitching together individual
parametric patches in such a way that a certain desired global smoothness is realized.
Whenever the patch complex corresponds to a Cartesian grid structure one can em-
ploy parametric mappings based on tensor products of univariate sufficiently smooth
splines. Of course, in general one encounters singular vertices, which means that at
such a vertex a number of cubical patches meet that is different from 2™. It is then
much less obvious how to find a piecewise defined parametrization for the union of
these patches such that each component of the parametric mapping is C™!. For a
general treatment of this question as well as for concrete constructions we refer, for
instance, to [30, 27, 31].
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The construction of patch complexes such that suitable reparametrizations of
some of the patches form local piecewise defined componentwise smooth parametric
representations of parts of the surface is a central theme in computer aided geometric
design (CAGD) and we will draw upon the techniques developed in this community.
This has been primarily developed for surfaces (n = 2) which corresponds to the
most relevant case with regard to boundary integral equations. Concrete practica-
ble schemes for modeling C™!-surfaces of arbitrary topology are by now known for
m = 0,1,2. (Although it is in principle clear how to proceed for higher degrees
of smoothness as well.) Typical mild provisions (not imposing any topological con-
straints) are that singular vertices are sufficiently separated in the patch complex
which can always be achieved by dyadic subdivisions of a complex that might initially
not meet this requirement; see [31, 42, 44].

2.2. Parametric lifting. We will always assume that I' is endowed with the
induced Lebesgue measure dy and Lo(T") denotes the space of measurable functions
on I' equipped with the topology of convergence in measure on compact sets. By
(-, )1, or more generally, for IV C T, by

(, o) = / u(@)o(z) du(z)

Ind

we will denote the corresponding Lo-inner product on I', IV, respectively.

We will be concerned with function spaces F(I") C Lo(I'"), TV C T, of the form
F(I') = H*(T") or F(I') = By (Ly(I")), where H*(T"), B;(L,(I"")) denote Sobolev and
Besov spaces on IV, respectively. Here the regularity index s for which these spaces
are canonically defined depends on the regularity of the domain IV. In particular,
under the above assumptions of I" we have

(2.2.1) 0<s<m+1 for m e Ny;

see, e.g., [29]. Let sr denote the supremum of all admissible regularity indices.
Throughout the following s < sp will be fixed in connection with the interpreta-
tion of F. The duals of F(I'') (with respect to the duality pairing (-,-)r/) will be
denoted by F*(I").

The spaces F(I") are usually defined via an atlas and partition of unity by lifting
corresponding spaces defined on open domains in R™ [1, 29]; see, e.g., [4, 26] for the
definition of these spaces on domains in R™.

When IV = T, the situation is particularly simple. We record the following
observations for later use. To this end, we will briefly write a < b to express that a
can be bounded by a constant multiple of b uniformly with respect to any parameters
on which a and b may depend. Moreover, a ~ b means that a < band b < a.

REMARK 2.2.1. Let

(2.2.2) g = 0ki(r; ().
Then setting

(2.2.3) (u,v); := (o K,V o K;)a,
one has

(2.2.4) (giu,v); = (u,v)r, = (|OKi|u o ki, v o Ki)o.
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By (2.1.2), one has

(2.2.5) a1 <gi(x) <cy, zeTy,
so that
(2.2.6) (v,v); ~ (v,v)p,, v € La(Ty).

REMARK 2.2.2. The bilinear form

(2.2.7) (u,0) 1= 3 (u,0);

defines a scalar product for La(T') such that

(2.2.8) I Loy ~ ()M

Hence any Riesz basis in La(T') has a dual with respect to (-,-) which also belongs to
Ly(I).
For any TV C T, the space F(I') is defined as the quotient space normed by

2.2.9 o= inf .
(2.2.9) lgll 7 reranh 1 fll 7
We will make use of the following familiar fact; see, e.g., [29].

REMARK 2.2.3. Assume that w is any smooth function on I” satisfying (2.2.5).
Then

Ifllz ~lwfllz feF

for any F of the form F(I'), T" CT.
REMARK 2.2.4. Suppose that U denotes any closed subspace of F. Then for any
reqular parametrization k; of I'; one has

(2.2.10) UDO)={vor;:veld;)}
and
(2.2.11) lollucrs) ~ 100 Rilluay, v € UTS).

Of course, reqular reparametrizations in (2.2.10) affect only the constants in (2.2.11)
and thus give rise to equivalent norms.

As mentioned before, our objective is to construct topological isomorphisms of
the form

(2.2.12) T:FT) - [[FT),

where F(T';)T are certain closed subspaces of F(I';) which, according to Remark 2.2.4,
can be fully described by subspaces of F(O). The superscript | will be seen to indicate
certain boundary conditions as detailed in the next section.
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2.3. Numbering of patches and orientation of faces. The construction of
T from (2.2.12) involves an appropriate numbering of the patches I';. To construct
this numbering it is useful to view the patches as vertices of a graph G. The set of
edges € is identified with the (n — 1) faces shared by adjacent patches IV, T". Any
two patches having an (n — 1) face in common are called neighbors.

We will construct now a numbering of the vertices of G, and based on this, an
ortentation for £. The numbering for G will be defined recursively as follows. Pick
any patch in G, call it 'y, and define

(2.3.1) G ={T'1}.

Next form a layer of level 2 around Gy by setting

(2.3.2) g2:{r/eg\g1 ;fmf’eg}.

We will fix some ordering of G by setting

(2.3.3) Go={T1,; :i=1,...,#Ga}.

Suppose now we have constructed subsets Gi,...,G,—1 for some ¢ > 2, where G;

contains all neighbors of the elements in G;_1 \ G;_2. Then set
(234) G = {F/ eg \ {Ql y---u gg_l} : f/ ﬂf/, S g, I e gg_l} .

Again assuming that the elements of Gy are indexed as I'y by some multi-integer
ac N1 we set

(2.3.5) Ge={Ta;i : T'a € Gi—1, T'a; a neighbor of 'y} .

Obviously, there exists L € N such that G = G; U--- U Gr. Now suppose that we
have fixed for each ¢ a total ordering for the elements I'y, a € N, in G, denoted by
<. For any a, we fix an ordering for the neighbors I'y ;, ¢ = 1,...,n, and extend <
in a lexicographical fashion by

) o~ a<a’, i, arbitrary,
(2.3.6) (ai) < (') iff {a:ag e

Obviously this establishes a total ordering in Gyy; which immediately extends to a
total ordering in G by

e | £(a) < () or
(2.3.7) a<a'iff {Z(a) =/{(a’) and a < a’,

where £(a) is the level £ so that 'y € Gy.
In the following the numbering (T';)}¥.; will always be assumed to stem from the

above ordering, i.e.,
(2.3.8) i<j iff a(i) <a'(j)

in the sense of (2.3.7).
Each edge I'; NI'; in £ will be indexed as e;; iff ¢ < [ which induces an orientation
in €. The oriented set of edges will be denoted by £'. One may picture this by
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Manifold r

a7
o

Fic. 3. Manifold and orientation of patch boundaries.

associating with e;; € £! an arrow pointing from the patch T'; into the patch I'; across
the common face; see Figure 3 indicating the decomposition of a closed spherelike
surface. The corresponding oriented graph will be denoted by G'.

The purpose of the above construction is to divide the (n— 1) faces of the patches
T'; into at most two groups, namely, inflow or outflow faces depending on the orien-
tation. Accordingly, we denote by 91T the outflow boundary of the patch I';, i.e.,

(2.3.9) o' = J{ei &'},
l

as indicated in Figure 4.

When I' has a boundary there exist some (n — 1) faces which are not yet included
in £. We will assign arrows to these boundary faces depending on the type of boundary
conditions that may be imposed there. If a patch boundary is part of the boundary of
T", where homogeneous Dirichlet conditions are imposed, this edge becomes an inflow
boundary while Neumann boundary conditions correspond to outflow boundaries; see
Figure 2, where respective boundary segments are flagged with D and N for Dirichlet
and Neumann conditions, respectively. The rationale behind this will become clear
from the subsequent discussion.

We will have to consider extensions across the outflow boundary. Accordingly, we
need to define an appropriate set of outflow neighbors

(2.3.10) N} ={T;€g": j>i,T;n(relint 9'T;) # 0},

which consists of those patches whose boundary intersects the relative interior of the
outflow boundary of I';. In complete analogy we define the inflow boundary

(2.3.11) o'y = J{ewi € €1}
and its set of neighbors ./\/ii
(2.3.12) /\/;l ={Ty € G' 1 £ <i,T;N(rel int O'T;) # 0}.
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Fic. 4. Inflow and outflow boundaries.

With each I'; we associate next the open set FI defined as
(2.3.13) Il = int (E U {f’ T e Nj}) .

Note that (2.3.13) implies that

(2.3.14) rel int 'T; C I'!
and
(2.3.15) LN =0 for ¢ <.

We will sometimes have to refer to the set of all upflow successors Q; or downflow
predecessors Qil of I'; given by

(2.3.16) Gl :={T;:j>i}, G :={T:j<i}

and their respective associated open domains
2317 T/h=int J{T i1 egl}, T =it J{T i1 e 6l )

Hence aside from the list of parametric mappings the information that will ultimately
be needed for the characterization of function spaces on I' and for the subsequent
construction of wavelets are the neighborhood relations encoded by G'.

2.4. A family of projections. The component spaces on the right-hand side
of (2.2.12) will ultimately be identified as ranges of certain projectors. In contrast
to [9] we will give an explicit (yet recursive) definition of these projectors and verify
then their relevant properties.
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To this end, let for IV C T the characteristic function of IV be denoted by xr, i.e.,
xr(z) = 1,z € IV and xp/(z) = 0,2 ¢ IV. Thus for any v € Lo(T'), the expression
Xrv means that v is first restricted to IV and then extended by zero to T'\I"". Likewise,
with a slight abuse of notation we will also write xr-v to mean the trivial extension
by zero of v € Lo(I”) to all of T" even though v may have been a priorily defined only
on I'". The restriction of v to IV will be denoted by v |r.

The main ingredient for the construction of the above mentioned projections will
be linear extension operators E; from Lo(T';) to LO(I‘ZT), ie.,

(2.4.1) (Ev)

r,=vIr;

whose particular properties will be specified later.
Given such E; we define next a family P! of mappings P; from Ly (T) into Lo (T)
associated with the flow G'. For i = 1, let

(2.4.2) Pro = xp1 By (v ]r,)

as well as

(2.4.3) P = xp1 By v=> Pw|lr, |, i=2...,N
7<1

In the following we will use the form (2.4.3) also for ¢ = 1, where, of course, it is
understood that the sum ) j<i Pjv is then vacuous and thus ignored. Clearly, each
P; depends only on a few predecessors, namely, by (2.3